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CHAPTER 1 INTRODUCTION

This chapter provides an introduction to medical image segmentation-related background, chal-

lenges, and deep learning (DL) techniques. It also includes an overview of the main results of this

dissertation.

1.1 Background

Medical image analysis, a critical research area within medical imaging, leverages computer

vision techniques to generate complex visual representations of the human body, crucial for dis-

ease diagnosis and therapy [2, 38, 159, 72, 96]. This field has been transformed by the integration

of various image acquisition tools, such as Magnetic Resonance (MR) Imaging [4, 84], Computed

Tomography (CT) [50, 71], ultrasound [132], and X-ray imaging [97], which are essential in non-

invasive and minimally invasive diagnostic methods. The core of medical image analysis involves

extracting semantic information from these images, facilitating both abstract interpretation and

quantitative measurements [38, 96]. Key processes in this field [38, 159] include feature extrac-

tion (identifying essential characteristics from data), segmentation (dividing images into specific

regions for detailed analysis), classification (grouping data based on shared attributes), registration

(aligning data from multiple sources), and measurement (obtaining precise quantitative values for

diagnosis and treatment evaluation). These advancements have significantly impacted diagnos-

tic radiology and minimally invasive therapy, underscoring the importance of imaging modality

choice in clinical diagnosis and understanding disease progression.

This dissertation mainly examines CT [12], also known as Computed Axial Tomography, which

is a cornerstone in medical imaging, emphasizing its critical role in providing detailed insights

into the body’s internal structures for accurate anatomical analysis and diagnosis. CT technol-
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ogy, which has advanced significantly since its introduction in the early 1970s, generates cross-

sectional images through computer-processed X-ray measurements from multiple angles, enabling

a non-invasive internal view [114]. These images are distinguished by their high contrast and

high spatial resolution, effectively differentiating between tissues of similar density and offering

clear visualization of small structures. The scanning process, quick and minimally discomforting,

involves the patient being exposed to X-ray beams with the attenuated rays captured and converted

into detailed cross-sectional and 3D images. The rapid imaging capability of CT is especially cru-

cial in emergencies. Its high-resolution outputs are instrumental in distinguishing normal anatomy

from pathological conditions, effectively identifying tumors [52], bone abnormalities [8], and

lung issues [144], as well as aiding in the guidance and monitoring of treatments such as biopsies,

chemotherapy, and radiation therapy [112, 132].

1.2 Medical Image Segmentation

This dissertation focuses on medical image segmentation. Image segmentation in medical diag-

nostics and treatment represents a fundamental process in medical imaging, where a medical image

is partitioned into multiple segments or sets of pixels (voxels), transforming its representation into

a format that is both simpler and more meaningful for analysis [90, 3, 72]. Segmentation enhances

diagnostic accuracy by enabling the precise delineation of anatomical structures and pathologi-

cal regions. Such precision is indispensable for accurately identifying various diseases, including

tumors, vascular diseases, and musculoskeletal disorders [68]. In the realm of treatment plan-

ning [117], accurate segmentation proves vital, particularly in disciplines like radiotherapy, where

it is essential to precisely outline target treatment areas while sparing critical structures. Lastly,

precise medical image segmentation, essential in personalized medicine, facilitates customized
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treatments tailored to patients’ unique anatomical and pathological profiles, enabling more effec-

tive, patient-specific interventions [106].

1.2.1 Evolution from Manual to Automated Techniques

The evolution of medical image segmentation began with manual techniques, where radiolo-

gists delineated images by hand, which faced time and accuracy limitations [76]. To mitigate these

issues, semi-automatic methods like thresholding and region growing were introduced, blending

manual input with automated algorithms for enhanced speed and accuracy, yet still necessitating

human involvement [108, 100]. The advent of fully automated methods marked a significant ad-

vancement, propelled by strides in computer technology and software development. These meth-

ods, including edge detection and clustering, reduced human input and enabled complex tasks like

3D volume rendering, driven by advancements in imaging modalities [108]. A pivotal moment

in this evolution was the integration of machine learning, particularly deep learning, into medical

image segmentation.

1.2.2 Deep Learning Techniques

Convolutional Network-Based Approaches Convolutional Neural Networks (CNNs) have been

instrumental in the advancement of medical image segmentation [60]. The foundational element

of CNNs is the convolutional layer, which applies filters to input images to extract features [65].

As data progresses through the network, these features become increasingly abstract, encapsulat-

ing higher-level concepts. In segmentation tasks, CNNs initially identify edges, textures, and other

salient features in the early layers. Deeper layers, in contrast, are tasked with recognizing more

intricate structures that are critical for specific segmentation tasks [60, 1].

A significant milestone in employing CNNs for medical image segmentation is the introduction

of the U-Net architecture [110]. U-Net, specifically designed for biomedical image segmentation,
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Convolution

Self-Attention

Image Vector

Image Vector

Convolutional Filter
(Full Padding)

Attention Vector

Figure 1: Convolution operations and self-attention mechanisms access regions of vastly different
sizes. In the context of vision, self-attention is specifically designed to learn the relationships
between one pixel and all other positions, including those far apart, enabling it to capture global
dependencies effectively. Conversely, convolution is governed by the size of the convolutional
filters and primarily focuses on local regions.

features a symmetrical structure with contracting and expanding paths, facilitating precise localiza-

tion. This architecture is particularly effective in tasks requiring both contextual understanding and

precise localization, such as tumor segmentation or organ delineation in medical imagery. Over

time, several adaptations and enhancements of the original U-Net model have emerged [164, 101].

Notable developments include 3D U-Nets [23, 95], optimized for volumetric data, and attention U-

Nets [101], which incorporate attention mechanisms to concentrate on specific regions of interest.

Additionally, nnUNet [56] has been developed to address variability, automating dataset-specific

processing and optimizing the training process.

While CNNs based approaches have achieved impressive results in medical image segmenta-

tion, they tend to focus on local features due to their convolutional nature (as shown in Figure 1),

which might lead to suboptimal performance in cases where global context or long-range depen-

dencies are crucial [20, 123].
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Transformer Based Approaches The introduction of Transformer-based models in medical im-

age segmentation marks a significant shift away from traditional convolutional methods [20, 48, 14,

120]. Initially developed for natural language processing tasks, Transformers have been effectively

adapted to navigate the complexities of medical imaging data, thereby offering new perspectives

and enhanced capabilities in segmentation tasks [72]. At the core of Transformers lies their reliance

on self-attention mechanisms for data processing [128], a feature that is particularly advantageous

in the context of medical imaging (as shown in Figure 1). This ability to capture long-range depen-

dencies and contextual information across entire images is crucial for understanding the complex

spatial relationships and diverse anatomical structures found in medical images [72].

TransUNet [20] stands as one of the pioneers in successfully employing the Vision Transformer

(ViT) for medical image segmentation, utilizing pre-trained weights from image classification.

In this architecture, convolutional layers form the core for feature extraction, while transformers

are employed to grasp the long-range global context. Following this approach, several studies

[123, 148, 18] have emerged; however, they often find that multiple transformer layers alone are

insufficient to capture long-term dependencies alongside precise spatial information within hierar-

chical feature maps.

To tackle this limitation, researchers have introduced self-attention mechanisms into the con-

volution operation [137, 157, 42] to enhance medical image segmentation. For instance, Gao et

al. [42] integrated self-attention into a CNN to improve segmentation outcomes. Zhou et al. [157]

proposed a hybrid model that interweaves convolution and self-attention in both the encoder and

decoder modules. While these methods demonstrate improved performance, their intricate design

of convolution and self-attention modules can limit the scalability of developing more advanced

transformer architectures.
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More recently, the Swin Transformer [85] has shown promising results, demonstrating linear

complexity in self-attention calculations. This approach facilitates efficient learning of long-range

contexts and the generation of hierarchical feature maps. Building on this, SwinUNet [13] employs

hierarchical transformer blocks within a U-Net-like architecture. DS-TransUNet [78] introduces a

more parallel encoder to process inputs at different resolutions, and SwinUNETR [120] leverages

pre-training on a vast medical image dataset.

Model
(e.g., 2D UNet,

SwinUNet)
in slice-by-slice

Medical Image Predicted Mask

Model
(e.g., 3D UNet,
SwinUNETR)
in volumetric

H

W

W

H

D

2D

3D

Figure 2: Comparison of 2D (slice-by-slice) and 3D (volumetric) Architectures for Medical Image
Segmentation.

2D and 3D Medical Image Segmentation 2D and 3D medical image segmentation are critical

techniques in medical imaging that facilitate precise analysis and diagnosis [111, 23, 95, 101, 20,

48, 120]. Figure 2 shows a comparison of 2D and 3D architectures for medical image segmenta-

tion. The top row illustrates a 2D model segmenting a medical image slice-by-slice, resulting in a

predicted mask for each individual slice. The bottom row shows a 3D model performing volumet-

ric segmentation on the entire medical image volume, producing a comprehensive predicted mask

across the entire volume input. The dimensions H, W, and D represent height, width, and depth,

respectively.
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2D segmentation focuses on slice-by-slice analysis, making it less computationally intensive

and easier to implement for tasks involving single organs or regions with clear boundaries. This

method is particularly effective in cases where the target structures are primarily 2D or when high-

resolution slices are available. However, 2D segmentation often struggles with capturing the spatial

continuity and context of anatomical structures across multiple slices, which can lead to inaccura-

cies in three-dimensional reconstructions and analyses.

Despite the simplicity of the 2D segmentation setting, we mainly focus on 3D medical im-

age segmentation in this dissertation for the following factors. First, 3D segmentation provides

a holistic view of anatomical structures, capturing spatial relationships and continuity across all

dimensions. This comprehensive perspective is crucial for accurately assessing complex structures

and pathologies that span multiple imaging slices, such as tumors, vascular networks, and organ

boundaries. Furthermore, 3D segmentation reduces the risk of slice-to-slice inconsistencies that

can occur in 2D segmentation, thereby improving the reliability and reproducibility of the analysis.

Advanced 3D techniques also facilitate more precise volumetric measurements and enable sophis-

ticated simulations and visualizations, which are invaluable for planning surgical interventions,

radiation therapy, and other treatments. Despite its higher computational demands, the integration

of advanced machine learning algorithms and improved hardware capabilities is making 3D seg-

mentation more accessible and efficient. Overall, the enhanced accuracy, continuity, and clinical

relevance of 3D segmentation make it a superior choice for many medical imaging applications,

driving advancements in patient care and medical research.

4D Medical Image Segmentation Beyond the 2D and 3D paradigms, 4D medical image seg-

mentation incorporates the temporal dimension, allowing for the analysis of dynamic changes
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within anatomical structures over time. This advanced technique is particularly beneficial for ap-

plications such as cardiac imaging, where capturing the heart’s motion across different phases of

the cardiac cycle is crucial for accurate assessment. By integrating spatial and temporal data, 4D

segmentation provides a more comprehensive understanding of organ function and disease pro-

gression, enabling precise tracking of tumors or monitoring the efficacy of treatments. Although

4D segmentation presents additional computational challenges and demands sophisticated algo-

rithms for temporal registration and motion correction, its ability to provide detailed insights into

dynamic physiological processes makes it an invaluable tool in the advancement of personalized

medicine and real-time diagnostic applications.

To effectively handle the additional temporal dimension in 4D medical image segmentation,

deep learning methods have been adapted and extended. 3D Convolutional Neural Networks

(CNNs) have been enhanced to incorporate temporal information by utilizing 3D+time convo-

lutional layers [126, 154], which allow the network to learn spatiotemporal features directly from

the 4D data. Recurrent Neural Networks (RNNs), such as Long Short-Term Memory (LSTM)

networks, are combined with CNNs to capture temporal dependencies, enabling the model to ac-

count for changes over time within the anatomical structures [147]. Additionally, U-Net variants

have been adapted to handle 4D data by adding temporal convolution layers, maintaining the ar-

chitecture’s efficiency in capturing detailed features while incorporating temporal continuity [34].

These advanced deep learning methods significantly improve the accuracy and robustness of 4D

segmentation, making them essential for dynamic and comprehensive medical image analysis.

1.2.3 Training Objectives

Training objective functions are a critical component in developing effective medical image

segmentation models, as they guide the optimization process by quantifying the difference be-
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tween the predicted and ground truth segmentations. Commonly used loss functions include Dice

Loss [55, 153] and Cross-Entropy Loss [25]. Dice Loss measures the overlap between predicted

and actual segmentation masks, making it particularly useful for handling imbalanced datasets by

focusing on regions of interest. Conversely, Cross-Entropy Loss calculates the pixel-wise classi-

fication error and is effective for multi-class segmentation tasks. Often, a combination of these

losses is employed to leverage their respective strengths, enhancing both global overlap and local

accuracy. Below, we provide a detailed overview of several popular loss functions.

CE Loss Cross Entropy (CE) is derived from the Kullback-Leibler (KL) Divergence [25], which

quantifies the dissimilarity between two probability distributions, typically denoted as P and Q.

The KL Divergence, a statistical distance measure, is defined as:

DKL(P ||Q) =
∑

i

pi log
(

pi

qi

)
= −

∑
i

pi log qi +
∑

i

pi log pi = H(P,Q) − H(P), (1.1)

where H(P,Q) = −
∑

i pi log qi is the cross entropy between the distribution P and Q, and H(P) =

−
∑

i pi log pi is the entropy of distribution P. In typical machine learning scenarios, the data

distribution P is assumed to be represented by the training dataset. Minimizing the KL Divergence

between the ground truth distribution P and the predicted distribution Q is equivalent to minimizing

the Cross-Entropy H(P,Q). The CE loss is defined as follows:

LCE = −
1
N

C∑
c

N∑
i

gc
i log sc

i , (1.2)

where gc
i is the ground truth binary indicator of class label c of voxel i, and sc

i is the correspond-

ing predicted segmentation probability. C is the number of classes, and N is the number of pix-
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els/voxels.

Dice Loss Dice loss directly optimizes the Dice Similarity Coefficient (DSC), a widely employed

metric for segmentation evaluation. Generally, two variants of the Dice loss are recognized [55].

One variant includes squared terms in the denominator [95], and it is defined as follows:

LDice−square = 1 −
2
∑C

c
∑N

i sc
i g

c
i∑C

c
∑N

i (sc
i )2 +

∑C
c
∑N

i (gc
i )2
. (1.3)

The other does not use the squared terms in the denominator [35], which is defined by

LDice = 1 −
2
∑C

c
∑N

i sc
i g

c
i∑C

c
∑N

i sc
i +

∑C
c
∑N

i gc
i

. (1.4)

Unless otherwise specified, we use the no-squared version (Equation 1.4) as the default config-

uration.

Boundary Loss Boundary loss was introduced to minimize dissimilarities between predicted

and ground truth segmentations [88]. The boundary loss function can be expressed as follows:

LBD =
∑
Ω

ϕG(p)sθ(p), (1.5)

where ϕG(p) = −DG(q) if point p ∈ G, and ϕG(p) = DG(q) otherwise. DG(q) is the distance map of

ground truth. An additional distribution-based loss to stabilize the DL model training process often

included [64]. Here researchers often use boundary loss in conjunction with the distribution-based

CE loss.
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LCE+BD = αLCE + (1 − α)LBD, (1.6)

where α is a hyperparameter and can be optimized through empirical studies.

TopK Loss TopK loss is a variation of cross entropy designed to prioritize challenging samples

during training. It retains the K percent worst pixels for loss, irrespective of their loss/probability

values [135, 88]. It is defined by

LTopK = −
1
N

C∑
c

∑
i∈K

gc
i log sc

i . (1.7)

1.2.4 Evaluation Metrics

Evaluating the performance of medical image segmentation models requires a set of robust

metrics that can accurately reflect the model’s effectiveness in delineating anatomical structures

and pathological regions. The following are the key metrics commonly used in this domain.

Dice Similarity Coefficient (DSC) Researchers also refer to the Dice Similarity Coefficient

(DSC) as the Dice score. The DSC is a widely used metric that quantifies the overlap between

the predicted segmentation mask and the ground truth. It is defined as

DSC =
2|A ∩ B|
|A| + |B|

, (1.8)

where A is the predicted mask and B is the ground truth mask. A higher DSC indicates better

overlap, with a maximum value of 1 signifying perfect agreement and 0 indicating no overlap. In
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2D segmentation, the DSC measures the area overlap between the predicted mask and the ground

truth, whereas in 3D segmentation, it measures the overlap through volumes.

HausdorffDistance (HD) The HausdorffDistance (HD) is a measure used to determine the sim-

ilarity between two sets of points. In medical image analysis, it is commonly used to evaluate the

accuracy of segmentation algorithms by comparing the segmented region against the ground truth

region. The HD is particularly useful because it considers the worst-case scenario by measuring

the greatest distance from a point in one set to the closest point in the other set. Given two sets A

and B, the Hausdorff Distance dH(A, B) is defined as:

dH(A, B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(b, a)}, (1.9)

where d(a, b) is the Euclidean distance between points a and b. sup and inf denote supremum

and infimum, respectively. The 95th percentile of the Hausdorff Distance (HD95) is often used to

reduce the impact of outliers.

Average Symmetric Surface Distance (ASSD) The Average Symmetric Surface Distance (ASSD)

is another metric used to evaluate the accuracy of segmentation algorithms, particularly in medi-

cal imaging. Unlike the Hausdorff Distance, which considers the worst-case scenario, the ASSD

provides an average measure of the distance between two surfaces, offering a more balanced as-

sessment of segmentation quality. The ASSD between two sets of points A and B is defined as the

average of the minimum distances from each point in one set to the closest point in the other set.
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Mathematically, it can be expressed as:

ASSD(A, B) =
1

|A| + |B|

∑
a∈A

min
b∈B

d(a, b) +
∑
b∈B

min
a∈A

d(b, a)

 , (1.10)

where d(a, b) is the distance between points a and b, |A| and |B| are the number of points in sets A

and B respectively. Researchers also use ASD (Average Surface Distance) when considering only

the distances from each point in the segmentation surface to the nearest point in the ground truth

mask surface, without considering the reverse. In general, for both ASSD and ASD, a smaller

value indicates a better match between the segmentation and the ground truth, implying higher

segmentation accuracy.

Jaccard Index (Intersection over Union, IoU) The Jaccard Index, also known as Intersection

over Union (IoU), is a crucial metric for evaluating the performance of segmentation algorithms,

particularly in medical image analysis. It quantifies the similarity between the predicted segmen-

tation and the ground truth by comparing their overlap with their union.

Mathematically, the Jaccard Index for two sets A and B is defined as:

IoU =
|A ∩ B|
|A ∪ B|

, (1.11)

where |A ∩ B| denotes the number of elements (or pixels) in the intersection of sets A and B, and

|A ∪ B| denotes the number of elements (or pixels) in the union of sets A and B.

Precision and Recall Precision and recall are crucial metrics used to evaluate the performance

of segmentation algorithms, particularly in the context of medical imaging. Precision is defined as
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the ratio of true positive results to the sum of true positive and false positive results. It measures

the accuracy of the positive predictions made by the model. Mathematically, it is expressed as:

Precision =
True Positives

True Positives + False Positives
. (1.12)

Recall, also known as sensitivity or true positive rate, is the ratio of true positive results to

the sum of true positive and false negative results. It measures the model’s ability to identify all

relevant instances in the dataset. Mathematically, it is expressed as:

Recall =
True Positives

True Positives + False Negatives
. (1.13)

In the context of medical imaging segmentation, precision, and recall provide insights into the

algorithm’s performance. High precision indicates that the segmentation algorithm produces a low

number of false positives, meaning most of the detected regions are correctly identified. High

recall indicates that the segmentation algorithm successfully identifies most of the true positive

regions, with few false negatives.

F1 Score The F1 Score is a metric used to evaluate the accuracy of a segmentation algorithm

by balancing both precision and recall. It is particularly useful when you need a single measure

that takes both false positives and false negatives into account, which is crucial in medical imaging

where both types of errors can have significant consequences.

The F1 Score is the harmonic mean of precision and recall, and it is calculated as follows:

F1 Score = 2 ×
Precision × Recall
Precision + Recall

. (1.14)
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The F1 Score ranges from 0 to 1, where 1 indicates perfect precision and recall (i.e., all predicted

positives are true positives, and all actual positives are correctly identified), and 0 indicates the

worst performance, where either precision or recall is zero.

In medical imaging segmentation, the F1 Score provides a comprehensive evaluation of the al-

gorithm’s performance by considering both over-segmentation (false positives) and under-segmentation

(false negatives). A higher F1 Score indicates a better balance between precision and recall, im-

plying higher segmentation accuracy and reliability.

Mean Absolute Distance The Mean Absolute Distance (MAD) is another metric used to eval-

uate the accuracy of segmentation algorithms, particularly in medical imaging. It measures the

average of the absolute differences between corresponding points on the predicted and ground

truth surfaces, providing a straightforward assessment of the segmentation quality.

Mathematically, the MAD between two sets of points A and B is defined as:

MAD(A, B) =
1
|A|

∑
a∈A

|d(a)|, (1.15)

where d(a) is the distance between a point a in set A and its corresponding point in set B, and |A|

is the number of points in set A.

In the context of medical imaging segmentation, the MAD provides a measure of how closely

the segmented surface aligns with the ground truth surface. A smaller MAD indicates a better

match between the segmentation and the ground truth, implying higher segmentation accuracy.

The MAD is particularly useful in applications where it is important to have an intuitive and easily

interpretable measure of segmentation accuracy. It complements other metrics like the ASSD or

ASD by providing a different perspective on the segmentation quality.
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1.2.5 Challenges in Medical Image Segmentation

Limitation of CNN-based Methods in Capturing Long-range Global Context. Medical im-

age segmentation is significantly challenged by the variability inherent in medical images [75].

This variability is due to factors like differences in patient demographics, imaging modalities, and

settings. Such diversity complicates the creation of universal segmentation models that perform

accurately across varied scenarios. Furthermore, medical images often contain noise and arti-

facts [61], such as motion artifacts or scanner-induced noise, which considerably affect segmen-

tation accuracy. CNN-based approaches, while effective in medical image segmentation, predom-

inantly focus on local features. This focus can lead to suboptimal performance where the global

context or long-range dependencies are essential [20, 123]. CNNs are proficient in local feature

extraction but often fall short in understanding the broader image context, which underscores the

need for methods that effectively integrate both local and global contextual information [20, 123].

Transformer-based encoders leveraging the self-attention mechanism show great promise in

this regard. Transformers were initially designed to capture long-term dependencies of sequential

data with stacked self-attention layers [128] and achieved great success in National Language Pro-

cessing (NLP) tasks. Inspired by this, Dosovitskiy et al. [30] proposed ViT by formulating image

classification as a sequence prediction task of the image patch (region) sequence, thereby cap-

turing long-term dependencies within the input image. TransUNet [20] successfully adapts ViT

to the medical image segmentation task, where the encoder consists of the Fully Convolutional

Network (FCN)-based layers followed by several layers of transformer (multi-head self-attention

module) to better capture the global context from medical image inputs. The subsequent studies

[123, 148, 18, 58] follow a similar route. However, learning the long-term dependencies that typi-
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cally contain precise spatial information in low-level feature maps requires more than a few trans-

former layers for high-level feature inputs. More recently, Swin Transformer [85] demonstrated

that it can simultaneously learn long-range global context and extract hierarchical feature maps

from natural images. Based on this idea, SwinUNet [13] utilizes hierarchical Swin Transformer

blocks to construct both encoder and decoder with a U-Net-like architecture. DS-TransUNet [78]

adds on the more parallel encoder to process the input with a different resolution. SwinUNETR

[120] uses a pre-training on a large medical image data set. Despite their usefulness, these fine-

grain ViT-based approaches use standard self-attention to capture short- and long-range interac-

tions. As such, they suffer from high computational costs and an explosion of time and memory

costs, especially when the feature map size becomes large.

Potential of Hybrid Convolution and Transformer-based Operations. Accurately delineating

boundaries in medical images in 3D multi-organ scenarios is a specific challenge, especially where

tissues or organs overlap or have similar intensities [69]. Segmenting small or irregularly shaped

structures demands high precision, which is crucial for many clinical applications. Additionally,

inhomogeneities in tissue intensities within the same image pose another challenge [129], as do is-

sues with image contrast and resolution [158], both of which can significantly impact segmentation

accuracy. While CNN-based U-nets have demonstrated remarkable accuracy in medical image seg-

mentation, they have limitations in modeling global dependencies due to localized receptive fields

[87]. More recently, UNETR [48] and SwinUNETR [120] were proposed for a multi-organ/multi-

tumor segmentation approach on 3D CT scans. These networks replace the CNN-based encoder

with a Transformer or Swin Transformer in the U-Net and have achieved state-of-the-art accuracy

[13, 48, 120]. However, it is worth noting that while Transformer is good at modeling global con-
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text, it is limited in capturing fine-grained details due to a lack of spatial inductive bias in modeling

local information, especially for medical images. Although few works, such as TranFuse [148], try

to solve this issue by presenting a fusion module to merge the features from CNN and Transformer,

it is limited to 2D inputs. This leads to the question of whether a hybrid approach that combines the

strengths of convolution and transformer-based operations could result in a more effective feature

extraction encoder for medical image segmentation. By harnessing the local feature recognition

capabilities of CNNs along with the global contextual understanding provided by transformers,

such a hybrid model could offer a more comprehensive and nuanced analysis of medical images.

Label Scarcity and Annotation Challenges A significant challenge in medical image segmen-

tation is the scarcity of labeled data. Annotating medical images requires expert knowledge and is

often time-consuming and expensive [119]. This scarcity leads to models that may not generalize

well across different datasets or clinical settings. The challenge becomes even more pronounced

when dealing with multi-modal data such as CT and MRI images, which require separate annota-

tions for each modality. The need for multi-modal annotations increases the workload for experts,

further exacerbating the issue of label scarcity [105, 120]. Semi-supervised and unsupervised

learning techniques [105, 120] have been proposed to mitigate this issue, leveraging unlabeled

data to improve model performance. However, these methods still face challenges in ensuring high

accuracy and reliability [130, 119].

One Framework for Multi-Modal Medical Image Segmentation In medical imaging and di-

agnostics, precise segmentation of anatomical structures from CT and MR imaging is vital for

enhancing diagnostic and therapeutic practices. Humans can easily identify features across modal-
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ities, yet algorithms trained with single modalities struggle with multi-modal segmentation. Multi-

modal learning, employing techniques like early fusion [55], late fusion [118], modality-specific

representation [160], and hyperdense connections [29], improve segmentation by integrating in-

formation from diverse sources more effectively than single-modality methods. However, these

traditional approaches require spatially aligned paired images from the same patient, a condition

seldom met due to misalignments and variations in unpaired images [33], compromising perfor-

mance. The shift towards unpaired multi-modal learning addresses this challenge by developing

robust segmentation methods for unpaired images from different modalities, offering a practical,

cost-effective solution for leveraging CT and MR in clinical settings.

Major 
Challenges

Single Organ &
Small Area &

Unclear Boundary

2D Focal SA +
Boudary Regression

 FocalUNETR

Multi Organs &
Large Area

3D Convolutional +
3D Swin Transformer
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Figure 3: A schematic diagram elucidates the progression and interrelation among our three works:
the 2D-based FocalUNETR, the 3D-based SwinAttUNet, and MulModSeg for multi-modal medi-
cal image segmentation. This hierarchy reflects an escalation in complexity, wherein the challenges
associated with less complex problems are subsumed by those encountered in more intricate sce-
narios. Consequently, models with greater capabilities intrinsically encompass the functionalities
of their less advanced counterparts.
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1.3 Overview of Main Results

In this section, we will provide an overview of my research’s core motivations, innovative

ideas, and principal outcomes (as shown in Figure 3). In Section 1.3.1, it introduces FocalUNETR

which incorporates focal self-attention to better leverage both local and global context for 2D

CT-based medical image segmentation. Section 1.3.2, presents SwinAttUNet which utilizes both

convolution and transformer-based modules for automatic 3D CT-based multi-organ segmentation.

Lastly, Section 1.3.3, discusses MulModSeg, a multi-modal segmentation strategy that enhances

medical image segmentation for both CT and MR images.

1.3.1 FocalUNETR: A Focal Transformer for Boundary-aware Segmentation of CT Images

Our proposed FocalUNETR [69] aims to address the limitations of CNNs in medical image

segmentation, particularly for 2D prostate segmentation in CT scans. The motivation stems from

the inherent challenges posed by unclear boundaries and high variability in such images. Fo-

calUNETR introduces a transformer-based architecture that employs focal self-attention mecha-

nisms, effectively enhancing the model’s ability to process both local and global features. This

novel approach aims to bridge the gap in accurately segmenting medical images with complex

spatial relationships.

The research on FocalUNETR yields impactful and promising results, significantly outper-

forming current models in segmentation accuracy for prostate segmentation tasks on both private

and public datasets. These advancements highlight its potential to enhance medical diagnostic

precision and efficiency with effective and efficient focal self-attention mechanisms. Despite Fo-

calUNETR’s success, its application is currently limited to 2D single-organ segmentation. Due to

the challenges in designing an efficient 3D version of the focal self-attention mechanism, a viable
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3D multi-organ segmentation approach remains unachievable.

1.3.2 A New Architecture Combining Convolutional and Transformer-based Networks for

Automatic 3D Multi-organ Segmentation on CT Images

The research presented in SwinAttUNet [70] introduces a novel architecture for 3D multi-

organ segmentation in CT imaging, effectively addressing the limitations of existing deep learning

models. This innovation stems from the understanding that while CNNs excel in recognizing

local features, Transformers are adept at learning global, long-range context. The SwinAttUNet

architecture merges these two approaches by combining a Swin Transformer with a CNN-based

U-Net. This integration includes a parallel encoder to capture diverse features, a cross-fusion

block for effective feature integration, and an attention-enabled decoder to enhance detail and

context comprehension. This design is particularly adept at capturing both nuanced local details

and broader global contextual information, making it a significant advancement in medical imaging

technology.

SwinAttUNet notably outperforms other 3D-based state-of-the-art methods, both quantitatively

and qualitatively. It shows statistically significant improvements in critical metrics like Dice Sim-

ilarity Coefficients (DSC) or Dice scores, Hausdorff Distances (HD), and Average Surface Dis-

tances (ASD), thereby achieving superior accuracy in segmenting organs such as the prostate,

bladder, rectum, lungs, liver, and kidneys. These advancements emphasize its potential to enhance

the efficiency and consistency of medical image analysis, particularly in radiation therapy plan-

ning. However, it’s important to acknowledge that SwinAttUNet’s training involves a relatively

small number of medical images. Given the abundance of labeled natural images, there is a press-

ing need to explore more effective ways to leverage these resources to further advance the field of

medical image segmentation.
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1.3.3 MulModSeg: Enhancing Unpaired Multi-Modal Medical Image Segmentation

We introduce MulModSeg, a multi-modal segmentation strategy designed to improve medical

image segmentation for CT and MR modalities. Motivated by the challenges of varying imaging

methods and data variability, MulModSeg incorporates modality-conditioned text embedding and

an alternating training (ALT) procedure. The text embedding uses a pre-trained CLIP text encoder

to integrate modality-specific information into the segmentation framework, enhancing feature

extraction and accuracy. The ALT procedure alternates training between CT and MR images,

ensuring balanced exposure and promoting model robustness across diverse medical imaging tasks.

Extensive experiments demonstrate that MulModSeg significantly outperforms state-of-the-art

methods in segmentation accuracy for abdominal multi-organ and cardiac substructure tasks. Us-

ing both FCN and Transformer-based backbones, the research shows substantial improvements

in critical metrics such as Dice scores. These results highlight MulModSeg’s potential to enhance

diagnostic accuracy and medical image analysis while seamlessly integrating into existing architec-

tures without significant modifications. Overall, MulModSeg offers a robust and efficient solution

for multi-modal medical image segmentation.

1.4 Organization of the Dissertation

The remainder of this dissertation is organized as follows: In Chapter 2, we present the Fo-

calUNETR framework, which incorporates focal self-attention and a UNet-like multi-scale encoder-

decoder design for 2D prostate segmentation. Additionally, we employ an auxiliary boundary-

aware regression task during the training process to better address the issue of unclear boundaries

in this specific task. In Chapter 3, we introduce a parallel convolutional and transformer-based 3D

medical image encoder, resulting in the novel SwinAttUNet architecture for 3D multi-organ seg-
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mentation tasks. This hybrid design allows us to fully leverage the advantages of capturing both

local spatial details and global long-range contexts. Chapter 4 introduces the MulModSeg method,

which incorporates conditioned text embedding and alternating training techniques for CT/MR-

based multi-modal medical image segmentation tasks. Finally, in Chapter 5, we summarize the

main results and discuss future directions to follow based on the work we are currently working

on.

1.5 Abbreviations

In Table 1, we summarize important abbreviations used throughout this dissertation.

Abbreviation Definition
AG attention gate
AI artificial intelligence
AMOS abdominal multi-Organ segmentation
ASD average surface distance
ASSD average symmetric surface distance
CNN convolutional neural network
CLS class
CT computed tomography
CT-ORG CT organ segmentation dataset
DL deep learning
DSC dice similarity coefficient
FCN fully convolutional network
HD Hausdorff distance
HU Hounsfield unit
MLP multi-layer perception
MRI magnetic resonance imaging
MR magnetic resonance
NLP natural language processing
NN neural network
SOTA state of the art
ViT vision transformer

Table 1: A summary of important abbreviations used throughout the dissertation.
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CHAPTER 2 FOCALUNETR: A FOCAL TRANSFORMER FOR
BOUNDARY-AWARE SEGMENTATION OF CT IMAGES

2.1 Introduction

2.1.1 Background Significance

Prostate cancer is a leading cause of cancer-related deaths in adult males, as highlighted in

studies such as Parikesit et al. [104]. A common treatment option for prostate cancer is external

beam radiation therapy [28], where CT scanning serves as a cost-effective tool for treatment plan-

ning compared to the more expensive MRI. Precise prostate segmentation in CT images is crucial

to ensure effective radiation dose delivery to tumor tissues while minimizing harm to surrounding

healthy tissues.

However, CT images have relatively low spatial resolution and soft tissue contrast compared to

MRI, making manual prostate segmentation time-consuming and prone to significant inter-operator

variability [76]. This poses a significant challenge in the treatment planning process, necessitating

the development of automated segmentation methods that can consistently deliver accurate results.

2.1.2 Related Work

Several automated segmentation methods, particularly those based on fully convolutional net-

works (FCNs) such as U-Net [110] and its variants [95, 136, 164], have been proposed to address

the limitations of manual segmentation. Despite their progress, these methods often struggle to

capture long-range relationships and global context information [20] due to the inherent limita-

tions of convolutional operations.

To overcome these limitations, researchers have turned to Vision Transformers (ViT) [30],

which leverage self-attention (SA) mechanisms. TransUNet [20] was one of the first to adapt ViT

for medical image segmentation by integrating transformer layers with an FCN-based encoder to
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better capture global context from high-level feature maps. Other models, such as TransFuse [148]

and MedT [123], combine FCNs and Transformers to capture both global dependencies and low-

level spatial details more effectively. Swin-UNet [13], utilizing efficient Swin Transformers [85],

and models like UNETR [48] and SwinUNETR [120] extended for 3D inputs, have also shown

promising results.

Despite these advancements, ViT-based networks using standard or shifted-window SA often

overlook the interactions between local and global contexts [138, 107]. As reported by Tang et

al. [120], even with self-supervised pre-training on extensive medical data, the performance of

prostate segmentation in high-resolution MRI images remains unsatisfactory, let alone in lower-

quality CT images. Additionally, the unclear prostate boundaries in CT images due to low soft

tissue contrast pose significant challenges [50, 131].

2.1.3 Our Contribution

Recently, the Focal Transformer [138] was proposed for general computer vision tasks, intro-

ducing focal self-attention to incorporate both fine-grained local and coarse-grained global inter-

actions. Inspired by this work, we propose FocalUNETR (Focal U-NEt TRansformers), a novel

architecture for CT-based medical image segmentation (Fig. 4A). While previous works like Psi-

Net [99] have incorporated additional decoders for enhanced boundary detection, they often fail

to capture global context effectively or address boundary randomness in low-contrast CT images.

In contrast, our approach employs a multi-task learning strategy with a Gaussian kernel over the

ground truth segmentation mask boundary [79] as an auxiliary boundary-aware contour regression

task (Fig. 4B). This auxiliary task acts as a regularization term for the main segmentation task,

enhancing the model’s ability to handle unclear boundaries in CT images.

In this chapter, we make several key contributions. First, we develop a novel focal transformer
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model (FocalUNETR) for CT-based prostate segmentation, utilizing focal SA to hierarchically

learn feature maps that account for both short- and long-range visual dependencies. We also tackle

the challenge of unclear boundaries specific to CT images by incorporating an auxiliary contour

regression task. Our methodology demonstrates superior performance compared to state-of-the-art

methods through extensive experiments on both private and public datasets.
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Figure 4: The architecture of FocalUNETR (A) as the main task for prostate segmentation and a
boundary-aware regression auxiliary task (B).

2.2 The FocalUNETR Architecture

2.2.1 The Main Task for Mask Generation

Our FocalUNETR architecture (Fig. 4) follows a multi-scale design similar to [48, 120],

enabling us to obtain hierarchical feature maps at different stages. The input medical image

X ∈ RC×H×W is first split into a sequence of tokens with dimension ⌈ H
H′ ⌉ × ⌈

W
W′ ⌉, where H,W

represent spatial height and width, respectively, and C represents the number of channels. These

tokens are then projected into an embedding space of dimension D using a patch of resolution
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(H′,W ′). The SA is computed at two focal levels [138]: fine-grained and coarse-grained, as illus-

trated in Fig. 5A. The focal SA attends to fine-grained tokens locally, while summarized tokens

are attended to globally (reducing computational cost). We perform focal SA at the window level,

where a feature map of x ∈ Rd×H′′×W′′ with spatial size H′′ ×W ′′ and d channels is partitioned into

a grid of windows with size sw × sw. For each window, we extract its surroundings using focal SA.

Window partition size: 
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Figure 5: (A) The focal SA mechanism, and (B) an example of perfect boundary matching using
focal SA for CT-based prostate segmentation task (lower panel), in which focal SA performs query-
key interactions and query-value aggregations in both fine- and coarse-grained levels (upper panel).

For window-wise focal SA [138], there are three terms {L, sw, sr}. Focal level L is the number

of granularity levels for which we extract the tokens for our focal SA. We present an example,

depicted in Fig. 5B, that illustrates the use of two focal levels (fine and coarse) for capturing the

interaction of local and global context for optimal boundary-matching between the prediction and

the ground truth for prostate segmentation. Focal window size sl
w is the size of the sub-window

on which we get the summarized tokens at level l ∈ {1, . . . , L}. Focal region size sl
r is the number

of sub-windows horizontally and vertically in attended regions at level l. The focal SA module

proceeds in two main steps, sub-window pooling and attention computation. In the sub-window

pooling step, an input feature map x ∈ Rd×H′′×W′′ is split into a grid of sub-windows with size
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{sl
w, s

l
w}, followed by a simple linear layer f l

p to pool the sub-windows spatially. The pooled feature

maps at different levels l provide rich information at both fine-grained and coarse-grained, where

xl = f l
p(x̂) ∈ R

d× H′′

sl
w
×W′′

sl
w , and x̂ = Reshape(x) ∈ R

(d× H′′

sl
w
×W′′

sl
w

)×(sl
w×sw

l )
. After obtaining the pooled

feature maps xlL
1 , we calculate the query at the first level and key and value for all levels using

three linear projection layers fq, fk, and fv:

Q = fq(x1),K = {Kl}L1 = fk({x1, . . . , xL}),V = {V l}L1 = fv({x1, . . . , xL}). (2.1)

For the queries inside the i-th window Qi ∈ R
d×sw×sw , we extract the sl

r × sl
r keys and values

from Kl and V l around the window where the query lies in and then gather the keys and values

from all L to obtain Ki = {K1, . . . ,KL} ∈ R
s×d and Vi = {V1, . . . ,VL} ∈ R

s×d, where s=
∑L

l=1(sl
r)

2.

Finally, a relative position bias is added to compute the focal SA for Qi by

Attention(Qi,Ki,Vi) = Softmax(
QiKT

i
√

d
+ B)Vi, (2.2)

where B = {Bl}L1 is the learnable relative position bias [138].

The encoder utilizes a patch size of 2 × 2 with a feature dimension of 2 × 2 × 1 = 4 (i.e., a

single input channel CT) and a D-dimensional embedding space. The overall architecture of the

encoder comprises four stages of focal transformer blocks, with a patch merging layer applied

between each stage to reduce the resolution by a factor of 2. We utilize an FCN-based decoder

(Fig. 4A) with skip connections to connect to the encoder at each resolution to construct a “U-

shaped" architecture for our CT-based prostate segmentation task. The output of the encoder is

concatenated with processed input volume features and fed into a residual block. A final 1 × 1
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convolutional layer with a suitable activation function, such as Softmax, is applied to obtain the

required number of class-based probabilities.

For the experiments, we follow the hyperparameter settings suggested in [138], with 2 focal

levels, transformer blocks of depths [2, 2, 6, 2], and head numbers [4, 8, 16, 32] for each of the

four stages. We then create FocalUNETR-S and FocalUNETR-B with D as 48 and 64, respectively.

These settings have parameters of 27.3 M and 48.3 M, which are comparable to other state-of-the-

art models.

2.2.2 The Auxiliary Task for Boundary Regression

For the main task of mask prediction (as illustrated in Fig. 4A), a combination of Dice loss

and Cross-Entropy loss is employed to evaluate the concordance of the predicted mask and the

ground truth on a pixel-wise level. The objective function for the segmentation head is given by:

Lseg = Ldice( p̂i,G) +Lce(p̂i,G), where p̂i represents the predicted probabilities from the main task

and G represents the ground truth mask, both given an input image i. The predicted probabilities,

p̂i, are derived from the main task through the application of the FocalUNETR model to the input

CT image.

To address the challenge of unclear boundaries in CT-based prostate segmentation, an auxil-

iary task is introduced for the purpose of predicting boundary-aware contours to assist the main

prostate segmentation task. This auxiliary task is achieved by attaching another convolution head

after the extracted feature maps at the final stage (see Fig. 4B). The boundary-aware contour, or

the induced boundary-sensitive label, is generated by considering pixels near the boundary of the

prostate mask. To do this, the contour points and their surrounding pixels are formulated into a

Gaussian distribution using a kernel with a fixed standard deviation of σ (in this specific case, e.g.,

σ = 1.6) [89, 50, 79]. The resulting contour is a heatmap in the form of a Heatsum function [79].
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We predict this heatmap with a regression task trained by minimizing mean-squared error instead

of treating it as a single-pixel boundary segmentation problem. Given the ground truth of contour

GC
i , induced from the segmentation mask for input image i, and the reconstructed output probabil-

ity p̂C
i , we use the following loss function: Lreg =

1
N

∑
i ||p̂C

i −GC
i ||2 where N is the total number of

images for each batch. This auxiliary task is trained concurrently with the main segmentation task.

A multi-task learning approach is adopted to regularize the main segmentation task through the

auxiliary boundary prediction task. The overall loss function is a combination of Lseg and Lreg:

Ltol = λ1Lseg + λ2Lreg, where λ1 and λ2 are hyper-parameters that weigh the contribution of the

mask prediction loss and contour regression loss, respectively, to the overall loss. The optimal

setting of λ1 = λ2 = 0.5 is determined by trying different settings.

2.3 Experiments

2.3.1 Datasets

To evaluate our method, we use a large private dataset with 400 CT scans and a large public

dataset with 300 CT scans (AMOS [57]). As far as we know, the AMOS dataset is the only publicly

available CT dataset including prostate ground truth. We randomly split the private dataset with

280 scans for training, 40 for validation, and 80 for testing. The AMOS dataset has 200 scans for

training and 100 for testing [57]. Although the AMOS dataset includes the prostate class, it mixes

the prostate (in males) and the uterus (in females) into one single class labeled PRO/UTE. We filter

out CT scans missing the PRO/UTE ground-truth segmentation.

2.3.2 Implementation Details

For the implementation, we utilize a server equipped with 8 Nvidia A100 GPUs, each with

40 GB of memory. All experiments are conducted in PyTorch, and each model is trained on a
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single GPU. We interpolate all CT scans into a constant voxel spacing of [1.0 × 1.0 × 1.5] mm

for both datasets. Houndsfield unit (HU) range of [−50, 150] is used and normalized to [0, 1].

Subsequently, each CT scan is cropped to a 128 × 128 × 64 voxel patch around the prostate area,

which is used as input for 3D models. For 2D models, we first slice each voxel patch in the axial

direction into 64 slices of 128 × 128 images for training and stack them back for evaluation. For

the private dataset, we train models for 200 epochs using the AdamW optimizer with an initial

learning rate of 5e−4. An exponential learning rate scheduler with a warmup of 5 epochs is applied

to the optimizer. The batch size is set to 24 for 2D models and 1 for 3D models. We use random

flip, rotation, and intensity scaling as augmentation transforms with probabilities of 0.1, 0.1, and

0.2, respectively. We also tried using 10% percent of AMOS training set as validation data to find

a better training parameter setting and re-trained the model with the full training set. However,

we did not get improved performance compared with directly applying the training parameters

learned from tuning the private dataset. We report the Dice Similarity Coefficient (DSC, %), 95%

percentile Hausdorff Distance (HD, mm), and Average Symmetric Surface Distance (ASSD, mm)

metrics.

2.4 Results and Discussion

2.4.1 Comparison with State-of-the-Art Methods

To demonstrate the effectiveness of FocalUNETR, we compare the CT-based prostate segmen-

tation performance with three 2D U-Net-based methods: U-Net[110], UNet++ [164], and Atten-

tion U-Net (AttUNet) [101], two 2D transformer-based segmentation methods: TransUNet [20]

and Swin-UNet [13], two 3D U-Net-based methods: U-Net (3D) [23] and V-Net [95], and two

3D transformer-based models: UNETR [48] and SiwnUNETR [120]. nnUNet [56] is used for
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Method
Private AMOS

DSC ↑ HD ↓ ASSD ↓ DSC ↑ HD ↓ ASSD ↓

U-Net 85.22 (1.23) 6.71 (1.03) 2.42 (0.65) 83.42 (2.28) 8.51 (1.56) 2.79 (0.61)
UNet++ 85.53 (1.61) 6.52 (1.13) 2.32 (0.58) 83.51 (2.31) 8.47 (1.62) 2.81 (0.57)
AttUNet 85.61 (0.98) 6.57 (0.96) 2.35 (0.72) 83.47 (2.34) 8.43 (1.85) 2.83 (0.59)
TransUNet 85.75 (2.01) 6.43 (1.28) 2.23 (0.67) 81.13 (3.03) 9.32 (1.87) 3.71 (0.79)
Swin-UNet 86.25 (1.69) 6.29 (1.31) 2.15 (0.51) 83.35 (2.46) 8.61 (1.82) 3.20 (0.64)

U-Net (3D) 85.42 (1.34) 6.73 (0.93) 2.36 (0.67) 83.25 (2.37) 8.43 (1.65) 2.86 (0.56)
V-Net (3D) 84.42 (1.21) 6.65 (1.17) 2.46 (0.61) 81.02 (3.11) 9.01 (1.93) 3.76 (0.82)
UNETR (3D) 82.21 (1.35) 7.25 (1.47) 2.64 (0.75) 81.09 (3.02) 8.91 (1.86) 3.62 (0.79)
SwinUNETR (3D) 84.93 (1.26) 6.85 (1.21) 2.48 (0.52) 83.32 (2.23) 8.63 (1.62) 3.21 (0.68)

nnUNet 85.86 (1.31) 6.43 (0.91) 2.09 (0.53) 83.56 (2.25) 8.36 (1.77) 2.65 (0.61)
FocalUNETR-S 86.53 (1.65) 5.95 (1.29) 2.13 (0.29) 82.21 (2.67) 8.73 (1.73) 3.46 (0.75)
FocalUNETR-B 87.73 (1.36) 5.61 (1.18) 2.04 (0.23) 83.61 (2.18) 8.32 (1.53) 2.76 (0.69)

FocalUNETR-S* 87.84 (1.32) 5.59 (1.23) 2.12 (0.31) 83.24 (2.52) 8.57 (1.70) 3.04 (0.67)
FocalUNETR-B* 89.23 (1.16) 4.85 (1.05) 1.81 (0.21) 83.79 (1.97) 8.31 (1.45) 2.71 (0.62)

Table 2: Quantitative performance comparison on the private and AMOS datasets with a mean
(standard deviation) for 3 runs with different seeds. An asterisk (*) denotes the model is co-trained
with the auxiliary contour regression task. The best results with/without the auxiliary task are
boldfaced or italicized, respectively.
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comparison as well. Both 2D and 3D models are included as there is no conclusive evidence for

which type is better for this task [131]. All methods (except nnUNet) follow the same settings as

FocalUNETR and are trained from scratch. TransUNet and Swin-UNet are the only methods that

are pre-trained on ImageNet. Detailed information regarding the number of parameters, FLOPs,

and average inference time can be found in Table 3.

Quantitative results are presented in Table 2, which shows that the proposed FocalUNETR,

even without co-training, outperforms other FCN and Transformer baselines (2D and 3D) in both

datasets for most of the metrics. The AMOS dataset mixes the prostate (males) /uterus (females,

a relatively small portion). The morphology of the prostate and uterus is significantly different.

Consequently, the models may struggle to provide accurate predictions for this specific portion

of the uterus. Thus, the overall performance of FocalUNETR is overshadowed by this challenge,

resulting in only moderate improvement over the baselines on the AMOS dataset. However, the

performance in the real-world (private) dataset gains a much better performance margin. When

co-trained with the auxiliary contour regression task and using the multi-task training strategy, the

performance of FocalUNETRs is further improved. In summary, these observations indicate that

incorporating FocalUNETR and multi-task training with an auxiliary contour regression task can

improve the challenging CT-based prostate segmentation performance.

Qualitative results of several representative methods are visualized in Fig. 6. The figure shows

that our FocalUNETR-B and FocalUNETR-B* generate more accurate segmentation results that

are more consistent with the ground truth than the results of the baseline models. All methods

perform well for relatively easy cases (1st row in Fig. 6), but the FocalUNETRs outperform the

other methods. For more challenging cases (rows 2-4 in Fig. 6), such as unclear boundaries

and mixed PRO/UTE labels, FocalUNETRs still perform better than other methods. Additionally,
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the FocalUNETRs are less likely to produce false positives (as shown in Fig. 7) for CT images

without a foreground ground truth, due to the focal SA mechanism that enables the model to

capture global context and helps to identify the correct boundary and shape of the prostate. Overall,

the FocalUNETRs demonstrate improved segmentation capabilities while preserving shapes more

precisely, making them promising tools for clinical applications.

Text

Original Image Ground Truth FocalUNETR-B* FocalUNETR-B AttUNet Swin-UNet U-Net (3D) SwinUNETR nnUNet

Figure 6: Qualitative results on sample test CT images from the private (first two rows) and AMOS
(last two rows) datasets.

2.4.2 Parameters and Inference Time

As shown in Table 3, our proposed FocalUNETR demonstrates a comparable model size, rel-

atively small FLOPs, and fast inference speed to most of the SOTAs. The parameter count for

FocalUNETR-S is 27.3 million with 15.7 GFLOPs, and for FocalUNETR-B, it is 48.3 million

with 27.5 GFLOPs. This positions FocalUNETR as a moderate-sized model with efficient compu-

tational requirements. For instance, models like TransUNet and UNETR (3D) have significantly

larger parameter counts of 105.3 million and 92.6 million, and FLOPs of 29.3G and 75.4G, re-
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Figure 7: Qualitative results of prostate segmentation by comparing our FocalUNETR-B with
UNet and TransUNet in 2D settings. All methods perform well for easy cases, but our
FocalUNETR-B can be even better. FocalUNETR-B is less likely to give a false prediction (false
positives) for CT images without a foreground mask.
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spectively, resulting in longer inference times of 4.87s and 6.49s. In contrast, FocalUNETR-S

achieves an inference time of 4.36s, and FocalUNETR-B achieves 5.35s, which is competitive

with models such as Swin-UNet (3.58s) and U-Net (3.12s) while maintaining lower FLOPs com-

pared to models like nnUNet (389G) and SwinUNETR (3D) (350G). These characteristics high-

light FocalUNETR’s balance between model size, computational efficiency, and speed, making it

an effective choice for medical image segmentation tasks.

Model Param. (M) FLOPs (G) Average Inference Time (s)

U-Net 7.2 9.3 3.12
UNet ++ 22.5 60.4 4.31
AttUNet 19.8 25.5 3.53
TransUNet 105.3 29.3 4.87
Swin-UNet 41.4 9.0 3.58
U-Net (3D) 16.6 285 6.51
V-Net (3D) 45.6 586 6.72
UNETR (3D) 92.6 75.4 6.49
SwinUNETR (3D) 62.2 350 7.23
nnUNet 19.3 389 9.65

FocalUNETR-S 27.3 15.7 4.36
FocalUNETR-B 48.3 27.5 5.35

Table 3: The number parameters, FLOPs, and average inference time per case for different models:
our FocalUNETR shows a comparable model size, relatively small FLOPs, and fast inference speed
to most of the SOTAs.

2.4.3 Ablation Study

To better examine the efficacy of the auxiliary task for FocalUNETR, we selected different

settings of λ1 and λ2 for the overall loss function Ltol on the private dataset. The results (Table 4)

indicate that as the value of λ2 is gradually increased and that of λ1 is correspondingly decreased

(thereby increasing the relative importance of the auxiliary contour regression task), segmentation

performance initially improves. However, as the ratio of contour information to segmentation mask

information becomes too unbalanced, performance begins to decline. Thus, it can be inferred that
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the optimal setting for these parameters is when both λ1 and λ2 are set to 0.5.

Ltol Lseg 0.8Lseg + 0.2Lreg 0.5Lseg + 0.5Lreg 0.2Lseg + 0.8Lreg

DSC ↑ 87.73 ± 1.36 88.01 ± 1.38 89.23 ± 1.16 87.53 ± 2.13

Table 4: Ablation study on different settings of total loss for FocalUNETR-B on the private dataset.

2.5 Conclusion

The proposed FocalUNETR architecture offers a transformative solution for precise prostate

segmentation in CT imaging, addressing challenges such as the prostate’s unclear boundaries due

to poor soft tissue contrast and the limitations of convolutional neural network-based models in

capturing long-range global context. This novel focal transformer-based image segmentation archi-

tecture efficiently extracts both local visual features and global context from CT images. An inno-

vative addition to this approach is the auxiliary boundary-induced label regression task, specifically

designed to tackle the issue of unclear boundaries in low-contrast CT images. The effectiveness of

FocalUNETR is evident in its substantial improvements in the Dice Similarity Coefficient, reduced

Hausdorff Distance, and Average Symmetric Surface Distance, outperforming other methods on

both private and public CT datasets. Despite its success, the architecture currently focuses only on

prostate segmentation and requires further development for 3D input adaptation and multi-organ

segmentation.

While FocalUNETR has achieved notable success, its application is presently confined to 2D-

based single-organ segmentation. The difficulty in developing an efficient 3D version of the focal

SA mechanism poses a significant challenge, leaving the realization of a 3D-based multi-organ

segmentation approach out of reach. To address this issue, the forthcoming Chapter 3 introduces

an innovative architecture. This new design uniquely combines convolutional and transformer-

based operations in parallel during the feature extraction stage, specifically tailored for the more
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complex 3D-based multi-organ segmentation tasks.
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CHAPTER 3 A NEW ARCHITECTURE COMBINING
CONVOLUTIONAL AND TRANSFORMER-BASED NETWORKS FOR
AUTOMATIC 3D MULTI-ORGAN SEGMENTATION ON CT IMAGES

3.1 Introduction

3.1.1 Background Significance

In the field of radiation therapy, precise targeting of tumor tissue while avoiding normal tis-

sues is crucial for successful treatment [10, 121, 143]. One of the key steps in the planning pro-

cess involves segmenting the treatment target and organs-at-risk (OARs) typically using planning

CT images. Currently, the clinical practice for contour delineation involves a labor-intensive and

operator-dependent manual process [46, 36, 39]. The manual contouring process in addition to

often being inefficient can also suffer from inconsistencies in contouring preferences or related

intra-and inter-observer uncertainties [46, 39]. Inaccuracies in contouring impact on planning

margin design—erroneous planning margins may lead to possible underdosing of the target and

excess radiation delivered to surrounding healthy tissues [127]. To address these issues, a method

for accurate automatic segmentation is needed to improve efficiency and consistency in radiation

treatment planning.

3.1.2 Related Work

Modern automatic multi-organ segmentation models can be roughly classified into two cate-

gories: conventional learning and deep learning-based segmentation [143, 44, 77, 11]. In general,

conventional learning-based approaches for building segmentation models have two major com-

ponents [54] : (a) extraction of handcrafted features to represent target organs, and (b) classifica-

tion/regression model for segmentation. For instance, Glocker et al. [43] developed a supervised

forest model that uses both class and structural information to jointly perform pixel classification
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and shape regression. To enhance the segmentation performance, Chen and Zheng [19] selected

the most important features from the complete feature set using a hierarchical landmark detection

method. Gao et al.[40] utilized multi-task random forests to segment the prostate, bladder, rectum,

and left and right femoral heads, jointly with a displacement regression task. Since these meth-

ods are typically created using low-dimensional hand-crafted features, their performance may be

limited, particularly when the training datasets suffer from limited contrast impeding clear differ-

entiation between organs at the boundaries, as is sometimes encountered with CT images.

Recently deep learning algorithms, which rely primarily on fully convolutional neural networks

(CNNs) based U-net architectures [110, 95, 62, 55, 15, 26, 116, 141] have been applied to the prob-

lem of organ segmentation for radiation treatment planning [143, 142, 113]. The U-Net is a popular

architecture and comprises an encoder and decoder, where the encoder progressively reduces the

resolution of CT scans to generate conceptual features across multiple scales. The decoder then

reconstructs the extracted features for multi-organ segmentation. The U-net model incorporates

skip-connections that combine the encoder and decoder outputs at different resolutions to maintain

information lost during downsampling and improve performance. In pelvic organ segmentation,

advanced U-net algorithms utilize supplementary techniques to facilitate the learning of more in-

formative segmentation features. These techniques include a localization network for detecting the

location of each organ before pixel-level segmentation [5], a self-attention/Transformer mechanism

for acquiring global features [102], deep supervision for improving generality [63], and multi-task

learning strategies for capturing boundaries [131].

While CNN-based U-Nets have demonstrated promise for medical image segmentation, they

have limitations in modeling global context (as shown in Figure 1) because the learning approach

tends to be focused on local information [87]. To overcome this limitation, the vision Transformer
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(ViT) [30] has been proposed as an effective method to capture global dependencies and improve

segmentation results for object structures with varying sizes and shapes. Studies have explored

the integration of Transformers into U-Net architectures to enhance their performance in CT im-

age segmentation. For instance, Chen et al. [20] used a Transformer between the encoder and

decoder of U-Net to segment 2D abdominal CT scans and capture global context from U-Net fea-

ture maps. Similarly, Cao et al. [14] proposed a U-Net with a shifted-window (Swin) transformer

(Swin-Unet) for 2D CT/MRI segmentation by replacing the convolutional blocks in U-Net with

Swin Transformer blocks for both the encoder and decoder. More recently, UNETR [48] and Swi-

nUNETR [120] were proposed for a multi-organ/multi-tumor segmentation approach on 3D CT

scans. These networks replace the CNN-based encoder with a Transformer or Swin Transformer

in the U-Net and have achieved state-of-the-art accuracy [14, 48, 120, 148]. However, it is worth

noting that while Transformer is effective at modeling global context, it is limited in capturing

granular details due to a lack of spatial inductive bias in modeling local information, especially in

the low data (high background) setting as is encountered with medical images [140, 49].

CNN Transformer

Encoder

Decoder

UNet TransUNet SwinUNETR SwinAttUNet
(Ours)

Figure 8: A comparison of several architectures for medical image segmentation with the encoder-
decoder architecture.
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3.1.3 Our Contribution

In this chapter, we developed and optimized a novel architecture, termed "SwinAttUNet" for

3D CT-based auto-segmentation of the prostate gland and surrounding OARs, and other normal

organs, including the lungs, liver, kidneys, and pelvic bones. SwinAttUNet bridges a 3D-U-Net

and a Swin Transformer in a parallel encoding manner (as shown in Figure 8) to take advantage

of both architectures. SwinAttUNet includes a parallel encoder, a cross-fusion block, and a CNN-

based decoder. To our knowledge, this is the first network combining a 3D-based parallel CNN

with a Transformer, along with several other unique features, for multiple organ segmentation.

Details of the network architecture and quantitative evaluation of the model are presented.

3.2 The SwinAttUNet Architecture

3.2.1 Overall Architecture Design

As depicted in Figure 9, we introduce the SwinAttUNet, which is a 3D network and is trained

using 3D CT image datasets. SwinAttUNet includes a parallel encoder, a cross-fusion block, and

a CNN-based decoder. The parallel encoder consists of a CNN branch (CB) and a Transformer

branch (TB), which independently extracts local details and global contextual information. The

cross-fusion block merges local and global features on the same scale. The CNN-based decoder

is designed to adapt the fused information and thereby improve model stability while maintain-

ing performance. A skip connection is applied between the cross-fusion block and decoder to

integrate low-level semantic features. Attention gates (AGs) are integrated within the CNN to sup-

press features in image background regions and focus attention on important regions of the image

(targets and OARs). All convolution blocks are 3D convolutions with a kernel size of three, and all

transformer blocks are Swin Transformers (with window-based self-attention and shifted-window-
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Figure 9: (a) The architecture of SwinAttUNet for pelvic segmentation with 3D CT inputs. (b) Par-
allel CNN and Transformer blocks for encoder with a cross-fusion module. (c) The architecture
of two successive Swin Transformer Blocks, W-MSA, and SW-MSA are multi-head self-attention
modules with regular and shifted windowing configurations, respectively. (d) Schematic of the
proposed additive attention gate (AG). Input features (xl) are scaled with attention coefficients (α)
computed in AG. Spatial regions are selected by analyzing both the activations and contextual
information provided by the gating signal (g) which is collected from a coarser scale. Grid resam-
pling of attention coefficients is done using trilinear interpolation.
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based self-attention). We use two blocks for both convolution and transformer operations.

3.2.2 Swin Transformer Branch for 3D Inputs

Our SwinAttUNet architecture features a multi-scale design that enables the generation of hi-

erarchical feature maps at different stages [48, 120]. As illustrated in Figure 9, the encoder takes

a medical input volume X ∈ RH×W×D×S , where H, W, and D represent the spatial height, width,

and depth, respectively, and C is the number of channels. A 3D token with a patch resolution of

(H′,W ′,D′) has a dimension of H′ ×W ′ × D′ × S . The patch partitioning layer creates a sequence

of 3D tokens with size H
H′ ×

W
W′ ×

D
D′ that are projected into a C-dimensional space via an embedding

layer. To efficiently model token interactions, we partition the input volumes into non-overlapping

windows and compute local self-attention within each region. Specifically, at layer l, we use a

window of size M × M × M to evenly divide a 3D token into ⌈H′
M ⌉ × ⌈

W′
M ⌉ × ⌈

D′
M ⌉ windows. The

encoder block outputs in layers l and l + 1 are computed as shown in Figure 9c, where W-MSA

and SW-MSA denote regular and window partitioning multi-head self-attention modules, respec-

tively. A 3D cyclic-shifting is also adopted for efficient batch computation of shifted windowing

[85, 120].

3.2.3 CNN Branch for 3D Inputs

Our CNN encoder branch is composed of a series of convolutional layers with a skip connec-

tion to improve network stability. The use of convolutional layers in the encoder helps to detect

local patterns and features such as edges and corners in the image. Specifically, it first applies a

convolutional layer with 36 (1× 1× 1) spatial filters with stride 1 to the input data, and then passes

it through four down-sampling residual blocks. Each residual block consists of one tri-linearly

down-sampled layer followed by two 3D convolutional layers. The first convolutional layer has

a 1 × 1 × 1 spatial filter with stride 1 in each direction while the second convolutional layer uses
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3× 3× 3 filters with the same stride. A skip connection used in ResNet [51] is applied between the

outputs of the first and second convolutional blocks.

3.2.4 Cross-Fusion for Two Branches

To fully utilize both local and global features in our encoder, we use a parallel structure with

a CNN and transformer blocks at each stage. To fuse these features, we introduce a cross-fusion

module (shown in Figure 9b). This module takes two inputs with the same shape, Fi×Hi×Wi×Di,

for the i-th stage, where Fi is the channel size. The module concatenates these two inputs and

passes them through two layers of 3 × 3 × 3 convolution with residual connections. The output of

this module is a fused feature map with the same shape as the input, which is then used as input

for the proceeding decoding operations. This simple and efficient module allows us to combine the

strengths of both CNN and transformer blocks in our encoder.

3.2.5 Attention-enabled Decoder

Standard CNN architectures gradually down-sample the feature-map grid to capture a large

receptive field and semantic contextual information. However, reducing false-positive predictions

for small, variably shaped objects remains challenging. To address this issue, existing segmentation

frameworks rely on separate object localization models. Here, we propose integrating AGs into a

standard CNN model [63] to achieve the same objective without training multiple models or adding

extra parameters. Unlike localization models in multi-stage CNNs, AGs progressively suppress

feature responses in irrelevant background regions without the need to crop regions of interest

between networks.

Additive AGs are employed to modulate feature responses through skip connections, to deter-

mine a gating vector for each pixel enabling focus on relevant regions at each multi-scale level.

Although more computationally intensive than multiplicative attention, previous studies [101] have
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shown that additive AGs achieve superior predictive accuracy. An additive vector concatenation-

based attention was adapted, in which the output of the nth multi-scale encoding convolutional

block (xl) was added to the output of the (n+1)th multiscale decoding convolutional block (xg), and

the ReLu activation function applied to the combined activations. The input undergoes a channel-

wise 1×1×1 convolutional layer, batch normalization layer, and sigmoidal activation layer is then

multiplied and concatenated to the input of the nth multi-scale level decoding convolutional block.

Figure 9d illustrates the attention gating mechanism.

3.3 Data Acquisition and Preprocessing

All experiments were implemented on a server equipped with 8 Nvidia A100 GPUs, each with

40 GB of memory. All experiments were conducted in the PyTorch framework in Python 3.8.13,

and each model was trained on a single GPU. Data augmentation was applied during training.

3.3.1 Institutional dataset: Pelvic Multi-Organ Segmentation Dataset

Planning CT and structure datasets for 300 prostate cancer patients were retrospectively se-

lected. The 300 cases were randomly split into a training set of 225 cases, a validation set of 30

cases, and a testing set of 45 cases. The testing dataset was "held out" and therefore “unseen"

relative to CT scans used for training and validation. All CT scans were resampled into a fixed

voxel spacing of [1.0 × 1.0 × 1.5] mm3 [81], and a Hounsfield unit (HU) range of [−50, 150] was

used and normalized to [0, 1]. Subsequently, each CT scan was cropped to a 192 × 192 × 64 voxel

patch around the prostate/bladder/rectum regions, used in both training and inference for the 3D

models. The models were trained for 200 epochs using the AdamW (Adaptive Moment Estima-

tion Weighted, a variant of Adam where the weight decay is performed only after controlling the

parameter-wise step size) optimizer with an initial learning rate of 5e−4. An exponential learning
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rate scheduler with a warmup of 5 epochs was applied to the optimizer. Random flip, rotation,

and intensity scaling were used as augmentation transforms, with probabilities of 0.1, 0.1, and 0.2,

respectively. The training datasets were increased by a factor of approximately 175 using data

augmentation. The training process for 200 epochs required approximately 16.5 h.

Ground-truth segments were available for all image datasets consisting of physician-drawn

contours for the prostate gland (target) and surrounding normal tissues (bladder and rectum). The

automatic contours generated by our network were compared to those of the ground-truth contours

to evaluate the performance of the network.

3.3.2 Public Dataset: CT Organ Segmentation Dataset (CT-ORG)

A publicly available dataset (CT-ORG) [109] was used for the training and evaluation of our

network for the auto-segmentation of other organs. Details of the CT-ORG dataset are provided by

Rister et al. [109] The dataset consisted of 100 CT scans, each of which included manual (ground-

truth) contours of the lungs, liver, bladder, kidney, and pelvic bones. The first 19 CT cases were

held out and used solely for testing. The remaining 81 cases were used for training following the

process of Rister et al [109]. Each CT dataset was resampled with a voxel size of [2×2×5] mm3, and

input patches of size 128 × 128 × 64 were applied. Each CT dataset was truncated to a HU range

of [−1000, 1000] and normalized [−1, 1] over this range. The same augmentation and training

strategy as the institutional dataset was applied to the CT-ORG dataset. The training process for

200 epochs required approximately 10.5 h.

3.4 Experiment Setup

While Chapter 1 covers general definitions of loss functions and evaluation metrics, this section

will provide specific descriptions for the 3D multi-organ segmentation setting.
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3.4.1 Loss Functions

We utilize cross-entropy loss:

LCE =
1
C

i∑
k=1

yk log(ŷk) (3.1)

and Dice loss:

LDice =
1
C

C∑
k=1

(1 −
2
∑

i∈I yi
kŷ

i
k∑

i∈I yi
k +

∑
i∈I ŷi

k

) (3.2)

for training, where C is the number of classes, I represents the whole volume of a 3D medical

image input, yk and ŷk are the ground truth mask and the predicted segregation from the model of

class k, respectively. The overall loss function was cast as an equally weighted summation:

Ltotal = LCE +LDice. (3.3)

3.4.2 Evaluation Metrics

We use the DSC and 95th percentile HD to evaluate the accuracy of segmentation in our exper-

iments. DSC evaluates the overlap of the predicted and ground truth segmentation map in 3D:

DSC =
2|P ∩G|
|P| + |G|

, (3.4)

where P indicates the predicted segmentation map and G denotes the ground truth. A DSC of

1 indicates a perfect segmentation while 0 indicates no overlap at all. HD measures the largest
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symmetrical distance between two segmentation maps:

HD = max{sup
p∈P

inf
g∈G

d(p, g), sup
g∈G

inf
p∈P

d(p, g)}, (3.5)

where d(·) represents the Euclidean distance, sup and inf denote supremum and infimum, respec-

tively.

We also include ASD, an average of all the distances from points on the surface of the predicted

segmentation mask to the surface of the ground truth mask:

ASD =
1
|S (P)|

∑
p∈P

d(S (p), S (G)), (3.6)

where d(S (p), S (G)) is the shortest distance of a predicted voxel S (p) to the set of ground truth

surface voxels, S (G).

3.4.3 Methods for Comparison

The performance of SwinAttUNet was compared against multiple state-of-the-art segmentation

models. For FCN-based models, V-Net [95], ResUNet [41], AttUNet [101], and nnUNet [55]

are used for comparison in both institutional and public dataset. For Transformer-based models,

UNETR [48] and SwinUNETR [120] were selected for comparison. P values were computed using

the Mann–Whitney U-test [93] to evaluate statistical significance between contours predicted using

SwinAttUNet and the next highest performing network. The significance level was set at 0.05,

where p < 0.05 indicates a statistically significant difference between the two networks.

To validate the effectiveness of the SwinAttUNet architecture, we ran an ablation experiment

using the institutional pelvic dataset. We first removed the AG to demonstrate its benefits in the
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decoding process. We then replaced the parallel encoder with only the CB or TB and compared

each iteration against the full SwinAttUNet network.

Oragn Method DSC (%) ↑ HD (mm) ↓ ASD (mm) ↓

Prostate w/o AG 86.12 ± 1.45 5.23 ± 1.50 1.51 ± 0.63
w/o CB 85.36 ± 2.43 6.15 ± 1.46 1.62 ± 0.67
w/o TB 84.69 ± 2.51 5.76 ± 1.43 1.56 ± 0.59
Full model 86.54 ± 1.21 5.06 ± 1.42 1.45 ± 0.57

Bladder w/o AG 93.72 ± 4.31 3.18 ± 1.26 0.85 ± 0.61
w/o CB 93.51 ± 3.32 3.25 ± 1.33 0.93 ± 0.43
w/o TB 93.24 ± 4.16 3.42 ± 1.37 0.86 ± 0.36
Full model 94.15 ± 1.17 3.16 ± 0.93 0.82 ± 0.12

Rectum w/o AG 86.31 ± 2.12 5.74 ± 1.94 1.53 ± 0.51
w/o CB 86.25 ± 1.83 6.11 ± 2.07 1.61 ± 0.68
w/o TB 85.49 ± 2.08 5.83 ± 1.85 1.53 ± 0.51
Full model 87.15 ± 1.68 5.54 ± 1.63 1.42 ± 0.38

Table 5: Ablation Study: DSC, HD, and ASD with the different settings for SwinAttUNet on the
institutional pelvic dataset. Shown are mean ± SD for three runs for each setting for the prostate
gland, bladder, and rectum. The most accurate results are shown in bold font. Abbreviations: AG,
Attention Gate; CB, CNN Branch; TB, Transformer Branch.

3.5 Results and Discussion

3.5.1 Overview of Qualitative Comparisons

Qualitative comparisons of auto-contours generated with SwinAttUNet, and other networks

are presented in Figures 10 and 11. Figure 10 shows results for four example cases based on the

institutional pelvic dataset. Contours are shown in the axial view for the ground truth (GT, Row 2),

SwinAttUNet (Row 3), and competing networks (Rows 4-9), for the prostate gland (blue), bladder

(green), and rectum (red). Careful inspection of the shapes of these contours and the boundary

distances between the different organs (relative to the ground truth segments, Row 2) shows that

the SwinAttUNet performs better than all other networks for all four example cases. Figure 11

shows results for five example cases based on the public dataset (CT-ORG). Contours are depicted
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Figure 10: Segmentation result from the institutional pelvic dataset. The input CT image of a
central slice (Row 1), the ground truth (Row 2), and the predicted segmentation from the SwinAt-
tUNet (Row 3), and all competing networks (Rows 4-9): prostate (blue), bladder (green), and
rectum (red).
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Figure 11: Segmentation result from CT-ORG dataset. The selected region of interest of each
organ from manual contours (Row 1), the SwinAttUNet (Row 2), and all competing networks
(Rows 3-8): lungs (yellow), liver (green), kidney (cyan), bladder (blue), and bones (purple).
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Oragn Method DSC (%) ↑ HD (mm) ↓ ASD (mm) ↓

Prostate V-Net 83.27 ± 2.71 7.75 ± 2.58 2.12 ± 0.73
ResUNet 84.15 ± 2.61 5.79 ± 1.63 1.74 ± 0.89
AttUNet 84.26 ± 2.54 5.81 ± 1.56 1.58 ± 0.65
nnUNet 84.12 ± 2.68 5.83 ± 2.01 1.81 ± 0.79
UNETR 82.51 ± 4.46 8.92 ± 2.65 2.34 ± 1.01
SwinUNETR 85.71 ± 2.32 6.10 ± 1.42 1.40 ± 0.65
SwinAttUNet (ours) 86.54 ± 1.21 5.06 ± 1.42 1.45 ± 0.57

P-values < 0.001 < 0.001 0.076

Bladder V-Net 91.56 ± 5.21 6.75 ± 2.01 1.62 ± 0.52
ResUNet 92.65 ± 4.52 4.46 ± 1.84 1.13 ± 0.24
AttUNet 93.31 ± 4.23 3.25 ± 1.21 0.87 ± 0.54
nnUNet 93.46 ± 5.03 4.83 ± 1.59 1.16 ± 0.46
UNETR 89.37 ± 5.67 6.34 ± 2.56 1.78 ± 0.67
SwinUNETR 93.62 ± 3.25 3.22 ± 1.14 0.91 ± 0.34
SwinAttUNet (ours) 94.15 ± 1.17 3.16 ± 0.93 0.82 ± 0.12

P-values < 0.001 < 0.001 < 0.001

Rectum V-Net 83.71 ± 3.52 7.12 ± 2.54 2.11 ± 0.61
ResUNet 86.02 ± 2.34 6.31 ± 2.24 1.58 ± 0.46
AttUNet 86.63 ± 2.01 5.81 ± 1.95 1.44 ± 0.49
nnUNet 86.53 ± 2.18 6.14 ± 2.35 1.61 ± 0.62
UNETR 82.16 ± 4.87 9.76 ± 2.45 2.43 ± 1.10
SwinUNETR 85.52 ± 2.24 6.12 ± 1.97 1.47 ± 0.61
SwinAttUNet (ours) 87.15 ± 1.68 5.54 ± 1.63 1.42 ± 0.38

P-values < 0.001 < 0.001 < 0.001

Table 6: Quantitative performance comparison on the institutional pelvic dataset in terms of DSC,
HD, and ASD metrics. The values represent the mean performance (and standard deviation) of 3
runs for each setting. The Mann–Whitney U-Test statistical analysis is presented to compare the
SwinAttUNet with the other networks. The best results are bolded.
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Oragn Method DSC (%) ↑ HD (mm) ↓ ASD (mm) ↓

Liver V-Net 94.13 ± 2.54 6.48 ± 2.32 1.73 ± 0.63
ResUNet 94.81 ± 1.81 5.74 ± 3.43 1.42 ± 0.87
AttUNet 95.23 ± 1.72 4.53 ± 1.67 1.26 ± 0.75
nnUNet 94.78 ± 1.95 6.21 ± 4.02 1.38 ± 0.84
UNETR 94.01 ± 2.34 6.83 ± 4.21 5.58 ± 3.54
SwinUNETR 94.81 ± 2.34 4.85 ± 2.63 1.97 ± 1.65
SwinAttUNet (ours) 96.16 ± 0.76 2.73 ± 1.19 1.08 ± 0.24

P-values < 0.001 < 0.001 0.004

Bladder V-Net 83.24 ± 11.75 7.68 ± 4.32 2.56 ± 0.97
ResUNet 82.48 ± 12.24 9.73 ± 6.85 3.12 ± 1.54
AttUNet 84.87 ± 11.86 8.56 ± 6.53 2.15 ± 1.17
nnUNet 85.26 ± 12.58 10.21 ± 8.57 2.53 ± 2.64
UNETR 82.13 ± 13.65 10.02 ± 5.84 2.86 ± 2.13
SwinUNETR 83.67 ± 13.15 8.76 ± 6.21 2.24 ± 1.35
SwinAttUNet (ours) 88.62 ± 7.91 8.23 ± 8.01 1.78 ± 1.21

P-values < 0.001 0.673 < 0.001

Lungs V-Net 95.63 ± 4.36 15.61 ± 8.84 2.89 ± 0.86
ResUNet 95.82 ± 5.27 6.64 ± 15.76 3.12 ± 4.42
AttUNet 96.87 ± 5.13 5.99 ± 11.97 3.31 ± 2.37
nnUNet 95.63 ± 6.85 8.57 ± 5.12 3.53 ± 6.56
UNETR 93.68 ± 13.64 15.25 ± 19.40 8.37 ± 9.06
SwinUNETR 95.99 ± 9.30 4.95 ± 4.37 2.56 ± 1.63
SwinAttUNet (ours) 97.90 ± 0.80 5.13 ± 4.11 1.88 ± 1.45

P-values < 0.001 0.893 < 0.001

Kidney V-Net 88.15 ± 3.25 4.45 ± 1.87 2.14 ± 3.32
ResUNet 92.03 ± 3.40 3.26 ± 1.32 0.95 ± 0.75
AttUNet 92.85 ± 3.73 2.12 ± 1.14 0.83 ± 0.58
nnUNet 93.41 ± 3.92 3.11 ± 5.73 1.01 ± 0.78
UNETR 88.96 ± 4.88 6.36 ± 9.03 3.18 ± 3.59
SwinUNETR 91.87 ± 3.41 3.37 ± 1.24 0.94 ± 0.66
SwinAttUNet (ours) 93.74 ± 2.25 2.29 ± 1.47 0.71 ± 0.43

P-values 0.003 0.653 < 0.001

Bone V-Net 86.45 ± 2.17 8.76 ± 3.21 2.22 ± 3.28
ResUNet 88.61 ± 4.95 5.58 ± 5.87 1.44 ± 1.23
nnUNet 88.63 ± 4.57 5.67 ± 6.12 2.19 ± 2.67
UNETR 86.85 ± 6.39 8.78 ± 9.03 4.72 ± 4.90
SwinUNETR 88.97 ± 4.80 5.63 ± 6.03 2.43 ± 2.44
SwinAttUNet (ours) 89.31 ± 3.87 5.31 ± 1.25 1.21 ± 1.11

P-values < 0.001 0.005 0.023

Table 7: Quantitative analysis for CT-ORG dataset: the table shows statistics for the DSC, HD,
and ASD for the proposed SwinAttUNet, VNet, ResUNet, AttUNet, nnUNet, UNETR, and Swin-
UNETR. The statistical analysis of the Mann–Whitney U-test is also efficiently presented to com-
pare the SwinAttUNet with each competing network. The best performance is bolded.
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for the ground truth (GT, Row 1), SwinAttUNet (Row 2), and competing networks (Rows 3-8) for

the lungs (yellow), liver (green), kidney (cyan), bladder (blue), and pelvic bones (purple). While

all networks produce accurate contours of the liver, lung, kidney, and bones, the SwinAttUNet is

shown to produce the best contours for all organs, including the bladder where discrepancies were

noted with the other networks relative to the ground-truth segments.

3.5.2 Ablation Study for Different Modules of SwinAttUNet

To assess the contribution of the AG, CB, and TB on the segmentation performance, a com-

parison was performed between the results obtained with the SwinAttUNet (full model) and the

network configurations without AG, CB, or TB. Table 5 presents the segmentation results for these

three different experiments. The SwinAttUNet (full model) shows superior results for all metrics,

DSC, HD, and ASD for the prostate, bladder, and rectum. The contribution of the various modules

of the SwinAttUNet is demonstrated by inferior results when the AG, CB, or TB are removed from

the network architecture, justifying the need for each module toward the overall accuracy of the

SwinAttUNet network.

3.5.3 SwinAttUNet on Institutional Dataset for Pelvic Organ Segmentation

Quantitative results for the SwinAttUNet and other networks trained on the institutional dataset

for the segmentation of pelvic organs are provided in Table 6. Data are shown for the DSC (%), HD

(mm), and ASD (mm) for the prostate, bladder, and rectum. p-values are also included for compari-

son between the SwinAttUNet and the next highest accuracy network at the 0.05 significance level.

For the DSC comparison, the SwinAttUNet outperforms all other networks with values of 86.5%

(prostate), 94.2% (bladder), and 87.2% (rectum). The HD95 (mm) values were also the lowest for

our SwinAttUNet relative to other networks. Statistically significant differences (p < 0.001) were

observed in the DSC and HD values for our network (SwinAttUNet) versus SwinUNETR for all
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organs. Apart from the prostate, SwinAttUNet ASD (mm) values outperformed those of all other

networks.

For the prostate, the ASD values were 1.40 mm (SwinUNETR) and 1.45 mm (our SwinAt-

tUNet), however, the difference was not statistically significant (p = 0.076). Moreover, the stan-

dard deviation of the prostate ASD with SwinAttUNet (0.57 mm) was lower than that of Swin-

UNETR (0.65 mm).

3.5.4 SwinAttUNet on the Public CT-ORG Dataset for Multi-organ Segmentation

Quantitative results for the SwinAttUNet and other networks trained on the CT-ORG dataset

for the segmentation of multiple organs are provided in Table 7. Data are shown for the DSC (%),

HD (mm), and ASD (mm) for the lungs, liver, kidneys, bladder, and pelvic bones. DSC values

are consistently the highest for the SwinAttUNet versus all other networks with values of 97.9%

(lungs), 96.2% (liver), 93.7% (kidneys), 88.6% (bladder), and 89.3% (pelvic bones). Statistically

significant DSC differences (p < 0.001) were observed for the SwinAttUNet relative to the Swi-

nUNETR network. Moreover, DSC standard deviations were significantly reduced on segments

produced with SwinAttUNet relative to other networks. For instance, the bladder DSC SD was

7.9 mm for SwinAttUNet, while it was > 11.5 mm for all other networks. HD (mm) values were

the lowest for our SwinAttUNet relative to other networks for the liver and pelvic bones with sta-

tistical significance achieved (against SwinUNETR) for the liver (p < 0.001) and pelvic bones

(p = 0.005). For the lungs, SwinAttUNet HD mean value was 5.13 mm while it was slightly better

with SwinUNETR (4.95 mm) though the difference was not statistically significant (p = 0.89). For

the kidneys, SwinAttUNet HD mean value was 2.29 mm while it was 2.12 mm for the AttUNet net-

work but not statistically different (p = 0.65). For the bladder, the HD mean value was 7.68 mm for

the V-Net slightly better than 8.23 mm for the SwinAttUNet network but not statistically different
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(p = 0.67). ASD values were lowest for all organs with our SwinAttUNet network with statistical

significance consistently achieved. ASD SDs were also significantly improved with SwinAttUNet.

For instance, ASD SDs for the liver were reduced to 0.24 mm with SwinAttUNet compared with

all other networks where the SDs were generally > 0.7 mm, suggesting lower variability and higher

consistency in the predicted contours with our network.

3.5.5 Discussion

In this work, we propose a U-shaped hierarchically fusing architecture called SwinAttUNet

for 3D CT-based multi-organ segmentation. The SwinAttUNet consists of three main compo-

nents: a convolutional encoder branch for extracting fine local features at different resolutions, a

Swin Transformer encoder branch in parallel for enriching global information at each resolution

level, and a set of AG-regulated, up-sampling convolutional blocks for reconstruction of features

into an N-class segmentation. Our network is novel in that the transformer layers effectively cap-

ture global information in parallel with the CNN layers for each resolution level, overcoming the

receptive field limitations of pure fully convolutional networks (FCNs). Additionally, the novel

AGs enable effective interaction of extracted features from different resolution levels, as evidenced

by the ablation study. The proposed network demonstrates promising segmentation performance

compared to current state-of-the-art methods for auto-segmentation of organ contours in multiple

regions of the body including the pelvis, thorax, and gastrointestinal. The superior DSC, HD, and

ASD results of our proposed network highlight the advantages of parallelizing the CNN and Swin

Transformer layers in the encoding stage for CT-based multi-organ segmentation.

Relative to our network other CNN-based models with more complex architectures and ground

truth segmentations based on multi-modal imaging information were able to achieve similar ac-

curacies. An example of this is a study by Dong et al. [67], where the investigators utilized a
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Cycle-GAN for 3D CT-to-synthetic MRI synthesis and trained the segmentation network on the

synthetic MRI scans. They reported Dice scores of 0.87 ± 0.04 for the prostate, and 0.95 ± 0.03

for the bladder using 140 pelvic image datasets. Similarly, other investigators used networks such

as GAN for CT-to-sMRI synthesis [102] (with Dice scores of 0.90 ± 0.05 for the rectum) and 2D

organ localization networks [5] (with Dice scores of 0.95 ± 0.02 for bladder). In the context of

postoperative prostate cancer, Balagopal et al. [7] developed a deep learning network (2D U-Net)

for auto-segmentation of the clinical target volume (CTV) incorporating uncertainty. The training

dataset consisted of 340 patients with post-operative prostate cancer, with ground-truth contours

drawn by physicians. A DSC value of 0.87 was reported for a holdout dataset (50 patient CT

images). Balagopal et al.[6] also developed a deep-learning network (based on a 3D-CNN), PSA-

Net, for segmentation of the CTV trained to incorporate differences in physician preferences during

segmentation. For training, 373 postoperative prostate cancer CT image datasets were employed.

Questions such as consistency in physician contouring preferences and whether inter-user variation

in segmentation affects treatment outcomes were addressed. DSC values of 0.87 were reported for

their network.

There are a few limitations to be noted. We trained our network on two independent (insti-

tutional and public datasets) training datasets because the ground-truth labels/contours were not

available for the same organs on these datasets. If contours were available for the same set of

organs, it would have become feasible to train the network with just one training dataset, which

may be more practical for clinical application. The generalization error of a network is best tested

using "unseen" datasets from an independent institution, as it tests the robustness of the network to

variation associated with multiple factors, such as image intensity and contrast, patient anatomy,

inter-observer differences in ground truth contours of expert annotators, etc.
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As part of future research, we intend to evaluate the network using unseen datasets from in-

dependent institutions. We will also incorporate advanced techniques/networks to enhance the

segmentation accuracy of SwinAttUNet. For instance, we propose to extend the parallel CNN and

Transformer into the decoding process, which has the potential to increase segmentation accuracy.

Our network is efficient. Apart from the training phase (which requires > 10 h but is done before

clinical application), the network is fast, requiring about 5 s/case for routine multi-organ contour

generation, thereby facilitating auto-segmentation for procedures such as on-table adaptive treat-

ment. We are investigating techniques to automatically detect and correct outliers from either

manually (user-defined) or automatically generated contours using this network. These tools are

likely to be of value toward the overall quality assurance of target and normal organ segmentation

in radiation treatment planning.

3.6 Conclusion

SwinAttUNet, an advanced deep learning architecture, combines convolutional and transformer-

based methods for the automated segmentation of organs in pelvic, thoracic, and gastrointestinal

regions. Integrating a shifted-window (Swin) transformer with a convolutional U-Net, it features a

parallel encoder, cross-fusion block, and attention-enhanced CNN decoder. Trained on diverse CT

datasets, SwinAttUNet excels in accuracy, surpassing existing models with its adept handling of

both local and global anatomical features. This proficiency positions it as an efficient tool for crit-

ical applications like radiation treatment planning, showcasing its potential in multi-organ, 3D-CT

auto-segmentation.

While SwinAttUNet demonstrates exceptional capabilities in 3D multi-organ medical image

segmentation, its training on a limited number of medical image data in only one modality (CT)
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presents a notable limitation. Building upon this, the emerging need for robust segmentation across

diverse medical imaging modalities presents a new challenge.

In the diverse landscape of medical imaging, where input ranges from multiple types of Mag-

netic Resonance (MR) imaging to CT scans, automatic segmentation algorithms face the chal-

lenge of maintaining consistent performance across different modalities due to the conventional

requirement for spatially aligned and paired images. We introduce the Multi-Modal Segmentation

(MulModSeg) strategy to address this challenge in the following Chapter 4, specifically designed

for unpaired CT/MR images. It incorporates two key innovations: a modality-specific text embed-

ding via CLIP model that adds modality awareness to existing segmentation frameworks without

significant computational overhead or structural modifications, and an alternating training method

that facilitates the integration of essential features from unpaired images.
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CHAPTER 4 MULMODSEG: ENHANCING UNPAIRED
MULTI-MODAL SEGMENTATION FOR MEDICAL IMAGES

4.1 Introduction

4.1.1 Background Significance

Medical image segmentation leverages multiple imaging techniques, such as Computed To-

mography (CT) and Magnetic Resonance (MR) Imaging, to provide comprehensive views of tis-

sues or organs for disease diagnosis and surgical planning [73]. Different modalities offer unique

advantages; MR provides superior soft tissue contrast, while CT delivers better bone detail and

higher spatial resolution [94]. Recent advancements in convolutional [110, 91] and transformer-

based neural networks [48, 47, 71] have achieved competitive segmentation precision. However,

while humans can easily identify features across modalities, algorithms trained on single modali-

ties struggle with segmenting multiple modalities. This leads to performance inconsistencies when

tested on different image types due to data variability, stemming from factors such as varying imag-

ing methods, scanners, acquisition settings, or patient conditions [159]. Training separate models

for each modality would be straightforward, but it would require a massive amount of annotated

data and could fail to leverage inter-domain information.

4.1.2 Related Work

To address this issue, researchers proposed several multi-modal medical image segmentation

methods [161, 149, 92, 73, 162]. The first group of methods aims to produce better segmentation

by simultaneously utilizing information from multiple modalities. In this context, techniques such

as input/layer/decision-level fusion [161], modality-specific representation [160], and hyperdense

connections [29] have been employed to enhance segmentation by integrating information from

diverse sources more effectively than single-modality methods. Typically, different modalities are
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treated as separate inputs for the model, which then generates combined inputs or learns a common

representation. However, these methods often require spatially aligned, paired images from the

same patient, a condition rarely met due to misalignments and variations in unpaired images, thus

compromising performance [32].

The exploration of multi-modal learning for medical image segmentation from unpaired CT

and MR scans has catalyzed significant innovations by leveraging the unique attributes of each

modality without depending on paired datasets. Research by Dou et al. [32] and Jiang et al. [59]

has led to the development of compact, efficient architectures that share convolutional kernels be-

tween modalities and incorporate modality-specific normalization alongside innovative loss func-

tions inspired by knowledge distillation, enhancing segmentation accuracy across diverse data

types. These advancements underscore the potential of dual-stream architectures [37], attention

mechanisms [139], and adversarial training [98] in improving segmentation performance. Yet,

challenges persist in harnessing shared cross-modality information due to additional preprocess-

ing, which impedes learning across significant domain shifts, such as those between MR and CT

images. Other methods like multiple feature extractors per modality, suggested by the X-shaped

architecture [124], add overhead and necessitate broader clinical adaptations. The shift towards

synthetic image generation [17] and semi-supervised learning [82] highlights a growing reliance on

unlabeled data to address the paired image scarcity, with methods like CycleGAN [165] showing

promise in synthesizing cardiac MR images from CT scans. However, these approaches necessi-

tate significant modifications to existing segmentation frameworks or the introduction of additional

complex steps for self-supervised training or synthesis, making their application challenging.
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4.1.3 Our Contribution

In this study, we introduce a versatile Multi-Modal Segmentation (MulModSeg) strategy, de-

signed for seamless integration of modality-conditioned text embedding with any encoder-decoder

architecture. This approach aims to enhance multi-modality medical image segmentation with-

out major architectural modifications during supervised training. Our framework features two key

innovations: a modality-specific text embedding via the frozen CLIP [24] text encoder that in-

troduces modality awareness to existing segmentation frameworks (as shown in Figure 12), and

an alternating training algorithm that facilitates the integration of essential features from unpaired

images. The MulModSeg strategy self-adjusts its decoder embedding layers to generate precise

segmentation outputs, inspired by the CLIP-driven universal model concept [83]. Moving beyond

its initial application within the CT modality for multi-class segmentation [83], this study expands

the use of modality-conditioned text embeddings for tasks across multiple modalities, specifically

CT and MR. To enable straightforward, one-pass end-to-end supervised training, we propose an Al-

ternating Training (ALT) strategy (see Alg. 1), effectively managing batched CT and MR samples

sequentially. These two designs allow the use of a single encoder-decoder structure to accurately

segment images across both modalities. Moreover, this modality-conditioned text embedding and

alternating training method can be easily integrated into popular FCN-based and Transformer-

based medical image segmentation networks, such as UNet [110] and SwinUNETR [47].

Our contributions are three-fold: (1) We propose the MulModSeg method using modality-

conditioned text embedding. This adds modality awareness to existing encoder-decoder segmen-

tation frameworks via a frozen CLIP text encoder. It does so without requiring major architectural

modifications or significant computational overhead. (2) We introduce an alternating training pro-



64

cedure to integrate essential features from unpaired CT/MR images. This enables straightforward,

one-pass, end-to-end supervised training across both CT and MR modalities. It streamlines the

training process and improves segmentation performance. (3) We demonstrate the superior perfor-

mance of MulModSeg over previous methods by conducting extensive performance evaluations on

abdominal multi-organ segmentation using AMOS [57] dataset and cardiac substructure segmen-

tation using MMWHS [166] dataset.

4.2 More Related Work

4.2.1 Multi-Modality Learning in Medical Imaging

In recent years, several deep learning architectures have been proposed for image segmenta-

tion, achieving remarkable performance [95, 20, 47, 48]. Among them, UNet [110] stands out as

the most popular and is often used as a baseline for developing better-performing models. More

recently, variations based on vision transformers (ViT) [31] and Swin transformers [86], such as

TransUNet [20], UNETR [48], and SwinUNETR [47], have shown superior performance com-

pared to previous versions of UNet. In the clinical imaging field, multi-modality learning presents

a similar, yet challenging, task. Multiple medical image domains have been leveraged for synthetic

image generation using Generative Adversarial Networks (GAN) [27, 145] or for multi-modal im-

age segmentation [45, 133]. Notably, Zhang et al. [150] merged these tasks in a cross-task feedback

fusion GAN that first generates synthetic CT images and then performs multi-modal segmentation,

using cross-domain information to enhance performance but requires registered paired images.

Cross-modality segmentation approaches have gained traction in overcoming the limitation of

needing aligned medical images and exploiting inter-domain features during training. Zheng et al.

[155] were pioneers in this area, using shape priors learned from an assistant modality to improve
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segmentation on a target modality through marginal space learning. Valindria et al. [125] devel-

oped dual-stream encoder-decoder models with separate branches for each modality, implementing

weight-sharing techniques to extract cross-modality features. Additionally, some researchers have

experimented with normalization layers to enhance model generalization [115, 163]. For example,

Pan et al. [103] introduced the IBN-Net, which leverages both Instance and Batch Normalization

to capture appearance changes and content information. Segu et al. [115] proposed training ad-

hoc Batch Normalization layers to collect domain-dependent statistics, mapping modalities onto a

shared latent space. Advancements in synthetic image generation have led to several works that as-

sist segmentation models with prior image translation [22, 74, 152, 163]. Zhang et al. [152] sought

to improve segmentation for modalities with limited training samples by using a GAN to reduce

the appearance gap between modalities. Similarly, Li et al. [74] introduced an Image Alignment

Module to minimize the appearance gap between assistant and target modalities and implemented

a Mutual Knowledge Distillation scheme [53] to utilize shared knowledge across modalities. More

recently, Zhou et al. [163] proposed simulating possible appearance changes in target domains

through non-linear transformations to augment source-similar and source-dissimilar images.

Our framework is different from existing methods as it aims to improve segmentation accuracy

by extracting modality-specific features through modality-conditioned text embedding with frozen

text encoders. This reduces the need for significant modification of popular segmentation frame-

works. Additionally, our technique allows for easily alternating the input modality during training,

which is not possible with previous methods that predominantly rely on image translation or prior

training.
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4.2.2 Text Assisted Medical Image Segmentation

Text-assisted medical image segmentation has emerged as a promising approach to enhance

the accuracy and efficiency of medical imaging tasks by integrating textual information with visual

data. The TGANet study [122] introduced an innovative method that leverages text-based embed-

dings to guide segmentation models in colonoscopy procedures. By incorporating size-related and

polyp number-related features in the form of text attention during training, TGANet can adapt to

varying polyp sizes and numbers, thereby improving the segmentation performance compared to

traditional image-only methods. Similarly, Zhong et al. [156] presented the benefits of language-

driven segmentation, showing significant improvements in Dice scores and reduced training data

requirements. These advancements underscore the potential of multimodal approaches in over-

coming the limitations of uni-modal systems that rely solely on images. To further extend the

capabilities of text-assisted segmentation, Liu et al. [80] demonstrated how frozen language mod-

els can stabilize training and enhance the latent space representation for medical vision-language

models. This approach, which integrates clinical text with imaging data, has shown superior per-

formance across various tasks, including segmentation while reducing the computational require-

ments. Moreover, Chen et al. [21] proposed a framework expanding the application of vision-

language pretraining to 3D medical images by generating synthetic text from images using large

language models. This innovative method addresses the scarcity of paired textual descriptions in

the medical domain and proves effective across multiple imaging modalities. These advancements

collectively illustrate the significant strides made in text-assisted medical image segmentation,

highlighting its potential to improve diagnostic accuracy and efficiency in clinical settings. Despite

the enhancement of the segmentation accuracy, these methods only targeted specific tasks in one
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Figure 12: Schematic representation of the MulModSeg strategy for multi-modal medical image
segmentation with (A) modality-conditioned text embedding and (B) alternating training (ALT).

specific modality. In this study, we explore using a frozen text encoder to encode modality-related

information to the encoder-decoder architectures for multi-modal medical image segmentation.

4.3 The MulModSeg Architecture

4.3.1 Problem Definition

Consider a set of N datasets {DM1
1 ,D

M2
2 , . . . ,D

MN
N }, each corresponding to a different imaging

modality M1,M2, . . . ,MN . Each dataset DMi
i = {(Xi j,Yi j)}

Ni
j=1 consists of Ni image-label pairs from

modality Mi (e.g., CT or MR), where Xi j represents the image and Yi j its associated ground truth

label. Traditionally, N separate segmentation tasks might be tackled by training individual models

on each of these datasets. For example, in the context of multi-class organ segmentation, such

as abdominal organs, we might encounter datasets like DCT
1 and DMR

2 . However, training separate

models for each modality requires a substantial amount of annotated data and fails to leverage

the complementary information across modalities. To address this issue, we propose a unified

approach: MulModSeg, a strategy designed to perform segmentation tasks across multiple modal-

ities using a single model.
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4.3.2 Overall Architecture Design

The overall architecture for MulModSeg (see Figure 12 A) has a vision branch and a text

branch. The text branch first generates modality-conditioned (CT/MR) text embedding from CLIP

for each category of organ, and then the vision branch takes both CT/MR scans and text embedding

to predict the segmentation mask. The alternating training (ALT) is shown in Figure 12B.

4.3.3 Modality-conditioned Text Embedding Branch

Incorporating text embeddings that condition the model on the specific modality of the input

image, such as CT or MR, we propose Modality-conditioned Text Embedding. It starts with a

text description related to the imaging modality with a template like "A CT/MR of a [CLS]", such

as "A magnetic resonance imaging of a [CLS]", where [CLS] is a concrete class of organ name,

e.g., spleen, stomach. These descriptions are transformed into modality-conditioned embeddings

using a pre-trained CLIP text encoder as our default setting. The generated text embeddings are

then concatenated with sample-specific features from the vision encoder and passed through a

multi-layer perceptron controller. This process generates weights to adjust the vision decoder’s

output feature maps, culminating in the generation of the final predicted segmentation mask. This

technique ensures that the model adapts its behavior and segmentation strategies to the specified

modality, optimizing feature extraction and segmentation accuracy for CT or MR input images.

4.3.4 Encoder-Decoder Based Vision Branch

The MulModSeg strategy effectively integrates popular U-Net-like architectures, including

UNet [110] and SwinUNETR [47], into a unified encoder-decoder framework tailored for un-

paired multi-modal medical image segmentation. For instance, the 3D U-Net, characterized by its

dual-pathway design, combines a contracting path for downsampling and an expansive path for
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upsampling, forming a "U" shape. The contracting path comprises blocks of 3D convolutional lay-

ers, ReLU activation functions, and max pooling to distill contextual information into a compact

form while reducing spatial dimensions. The expansive path, conversely, utilizes 3D transposed

convolutions and skip connections to merge features from the contracting path, aiding in precise lo-

calization and the recovery of spatial details lost during downsampling operation. In the expansive

path, a final layer of 3D convolution with 1 × 1 × 1 kernels maps the feature maps to segmenta-

tion classes. MulModSeg extends the functionality of the traditional 3D U-Net by processing both

standardized and normalized CT scans through the vision encoder for feature extraction. It incor-

porates a global averaging block to aggregate sample-specific features at the encoder’s final stage,

coupled with a controller layer for accurate, modality-conditioned, class-specific output adjustment

of the extracted image features. Furthermore, MulModSeg innovates by substituting the conven-

tional single final layer convolution in the decoder with a series of three sequential convolution

layers with 1 × 1 × 1 kernels similar to [83], whose weights are determined in the text embedding

branch, enriching the model’s segmentation precision and adaptability to different medical imaging

modalities.

4.3.5 The Controller as A Bridge

The controller in our MulModSeg acts as a bridge connecting the textual context and image

features. First, the text encoder generates embeddings for each class using the text descriptions

depicted above. These embeddings (wk) are concatenated with global image features (g) extracted

by the vision encoder from CT/MR scans, forming a combined feature vector (wk ⊕ g). This

vector is input into a multi-layer perceptron (MLP) called the text-based controller, which gener-

ates segmentation parameters: θk = MLP(wk ⊕ g). The vision branch preprocesses CT/MR scans

for standardization and then extracts image features (F) using the vision encoder. These features
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are processed by a text-driven segmentor consisting of three sequential convolutional layers with

1× 1× 1 kernels. The first two layers have 8 channels, and the last layer has 1 channel correspond-

ing to the predicted class ([CLS ]k). The segmentation prediction for each class is computed as:

Pk = Sigmoid(((F ∗ θk1) ∗ θk2) ∗ θk3), where θk = {θk1, θk2, θk3} and ∗ for convolution. The predicted

mask Pk ∈ R
1×H×W×D denotes the foreground of each class in one vs. all manner.

4.3.6 Modality Driven Alternating Training

ALT (as shown in Figure 12B) is designed to enhance model training on multi-modal medical

imaging data, specifically alternating between CT and MR modalities within each training itera-

tion. The algorithm utilizes cyclic loaders for both CT and MR datasets, ensuring uninterrupted

data feeding by looping back to the start once the end of a dataset is reached. During each iteration,

the algorithm processes a batch from each modality: first CT, then MR by extracting images and

labels, identifying the batch’s modality, and feeding this information into the model to generate

predictions. This methodical alternation between CT and MR batches allows for balanced expo-

sure to both modalities, promoting model robustness and preventing bias towards either modality,

thus enhancing the model’s generalization capabilities across diverse medical imaging tasks. The

overall ALT algorithm is summarized as follows:

4.4 Experiments

4.4.1 Experiments Setup

We aim to validate the effectiveness of the proposed MulModSeg strategy in improving seg-

mentation performance through a series of comprehensive experiments. To achieve this, several

key research questions must be addressed. Q1: How effective is text embedding in improving

segmentation accuracy, and which types of embedding yield the best results? Q2: Do modality-
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Algorithm 1 Alternating Training (ALT) with CT and MR Modalities
1: procedure TrainEpoch(CT Loader, MRLoader, model, optimizer, lossFunc)
2: model.train()
3: maxIter ← max(len(CT Loader), len(MRLoader))
4: cycleCT ← cycle(CT Loader)
5: cycleMR← cycle(MRLoader)
6: for iter ∈ range(maxIter) do
7: batchCT ← next(cycleCT )
8: batchMR← next(cycleMR)
9: for batch ∈ [batchCT, batchMR] do

10: images, labels← batch[′image′], batch[′label′]
11: modality← batch[′modality′]
12: logits← model(images,modality)
13: loss← lossFunc(logits, labels)
14: optimizer.zero_grad()
15: loss.backward()
16: optimizer.step()
17: end for
18: end for
19: end procedure

conditioned text embedding and alternating training (ALT) have a positive impact on the segmen-

tation accuracy across different organ structures and imaging modalities (CT/MR) using various

backbone architectures, specifically UNet and SwinUNETR? Q3: Does MulModSeg outperform

existing state-of-the-art (SOTA) methods in terms of performance? Q4: What is the impact of

varying the ratio of CT to MR scans on the model’s performance, especially in simulating more

realistic, real-world scenarios?

4.4.2 Datasets

For a fair comparison with existing methodologies, we assembled an unpaired multi-modal

dataset for abdominal multi-organ segmentation, consisting of 162 CT scans and 54 MR scans from

AMOS [57] dataset. The focus is on segmenting 13 abdominal organs: spleen (SPL), right kidney

(RKI), left kidney (LKI), gallbladder (GBL), esophagus (ESO), liver (LIV), stomach (STO), aorta

(AOR), inferior vena cava (IVC), pancreas (PAN), right adrenal gland (RAD), left adrenal gland
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(LAG), and duodenum (DUO). Following established protocols, distinct preprocessing methods

were applied to CT and MR scans to address modality discrepancies. CT scans are clipped to the

intensity window [−275, 125], and then normalized to [0, 1], while MR scans were resampled to

[1.5 × 1.5 × 2.0] mm3, cropped to 96 × 96 × 96 for training, and intensity histograms clipped by

0.5% before min-max normalization to [0, 1]. The Multi-Modality Whole Heart Segmentation

Challenge [166] (MMWHS) dataset comprises 20 CT and 20 MR scans, collectively used for car-

diac substructure segmentation, focusing on seven substructures: left ventricle (LV), right ventricle

(RV), left atrium (LA), right atrium (RA), myocardium of LV (MY), ascending aorta (AA), and

pulmonary artery (PA). Preprocessing involves resampling scans to [1.5×1.5×2.0] mm3 resolution

and normalizing intensities to [0, 1] range, cropped to 96 × 96 × 96 for training.

Balanced Data Splitting We utilized an equal ratio of CT to MR scans for the AMOS dataset,

each with 54 scans. Of these, 35 scans are used for training and 19 for testing. Similarly, for the

MMWHS dataset, each modality (CT or MR) consists of 20 scans, divided into 75% for training

and 25% for testing.

Imbalanced Data Splitting In the AMOS dataset, we implemented ratios of 2:1 and 3:1 for CT to

MR scans, thus increasing the number of CT scans to deviate from the balanced splitting. For the

MMWHS dataset, building on previous cross-modality segmentation research on this dataset [73,

9], we employed MR as the auxiliary modality and CT as the target modality. This choice was

driven by the superior soft tissue contrast provided by MR, which offers more detailed information

for segmenting heart substructures. We divided the CT data randomly and evenly to conduct a two-

fold cross-validation. Each training iteration involved 20 MRs and 10 CTs, simulating a scenario

of data scarcity for the target modality.
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4.4.3 Implementation Details

We utilized PyTorch 2.0 and MONAI 1.2 [16] to implement both our proposed method and the

baselines for comparison. All models were trained from scratch on a server with NVIDIA A100

GPUs. Specifically, we assessed the performance of 3D UNet and SwinUNETR as backbones for

our MulModSeg strategy. We employed the AdamW optimizer with a warm-up cosine scheduler

with an initial learning rate of 10−3 and a weight decay of 10−4 for 1000 epochs training including

the first 10 epochs for warmup. The last epoch’s model is used for evaluation based on empirical

experience. All hyperparameters are obtained through two-fold cross-validation over the train-

ing set unless otherwise specified. To avoid overfitting, on-the-fly data augmentation is applied,

including random foreground and background patch sampling with a 1 : 1 ratio and intensity shift-

ing/scaling. A sum of Dice loss and Cross-entropy loss is used for training. For inference, an

overlapping area ratio of 0.5 is applied via a sliding window strategy, and the Dice score is used

for performance evaluation. We will release the source codes upon acceptance.

4.5 Results and Discussion

Method Text Description Avg. Dice↑ (CT) Avg. Dice↑ (MR)

Vision-Only - 82.50 81.91
One Hot [146] - 86.64 84.50
BioBERT [66] A {CT/MR} imaging of a [CLS]. 86.62 84.59

MedCLIP [134] A {CT/MR} imaging of a [CLS]. 86.30 84.10
V1-CLIP A photo of [CLS]. 85.60 84.30
V2-CLIP There is [CLS] in this {CT/MR}. 86.20 84.70

V3-CLIP (Ours) A {CT/MR} imaging of a [CLS]. 87.14 85.33

Table 8: Performance comparison of different text embeddings of MulModSeg on AMOS dataset
with UNet backbone. V3-CLIP achieves the highest mean Dice scores for both CT and MR modal-
ities. The bolded text represents the best performance. CT: computerized tomography, MR: mag-
netic resonance. The default Vison-Only model does not use text information and is trained with
ALT.
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4.5.1 Effectiveness of Different Text Embeddings (Q1)

To investigate the impact of text embeddings in addition to vision-only and their variants on

segmentation performance, we conducted ablation studies using different embeddings, including

One Hot, BioBERT, MedCLIP, and our V1, V2, and V3 -CLIP. Table 8 presents the results for

AMOS dataset with a balanced split and UNet backbone. The findings demonstrate a clear ad-

vantage of using modality-conditioned text embeddings over conventional methods. Specifically,

our proposed V3-CLIP embedding achieved the highest mean Dice scores of 87.14 for CT and

85.33 for MR, significantly outperforming other embeddings. This improvement underscores the

efficacy of leveraging modality-specific textual information to enhance feature representation and

segmentation accuracy of the computer vision models.

(B)

(A)

Figure 13: Visual comparison of segmentation results on AMOS dataset using the UNet backbone.
Red boxes highlight areas where MulModSeg demonstrates improved predicted details compared
to baselines.
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4.5.2 Positive Impacts of Modality-Conditioned Text Embedding and ALT (Q2)

Table 9 presents Dice scores for unpaired multi-modal abdominal multi-organ segmentation

using UNet and SwinUNETR backbones on AMOS dataset. It compares segmentation accuracy

across various settings: without text embedding (w/o text) and with text embedding (w text), and

for different scenarios including CT (for training)→ CT (for testing), ALT→ CT, MR→MR, and

ALT → MR. For both UNet and SwinUNETR backbones, configurations with text embeddings

show substantial improvements over those without. For instance, with the UNet backbone, the ALT

+ Text setup yields an average Dice score of 87.14 on the CT test set, compared to 82.50 without

text embeddings, and an increase from 81.91 to 85.33 on the MR test set. The SwinUNETR

backbone shows similar trends, further validating our approach. Additionally, the ALT procedure

alone outperforms setups without ALT, highlighting its effectiveness. Similar enhancements of the

details in predicted masks can be observed in visual comparison results (Figure 13).

Setting
(UNet) Cat. Dice (%) ↑

Avg.↑
SPL RKI LKI GBL ESO LIV STO AOR IVC PAN RAD LAG DUO

w/o text

CT→CT 92.01 93.62 93.56 76.81 69.53 95.51 88.02 92.26 86.31 78.72 61.87 62.61 65.22 81.23
ALT→CT 92.90 94.19 94.31 77.02 71.26 95.62 88.87 93.38 86.86 80.91 63.82 64.95 68.42 82.50
MR→MR 94.57 93.91 93.12 67.38 70.12 95.87 86.13 91.02 86.44 79.42 55.73 51.20 60.13 78.85
ALT→MR 95.20 95.58 95.32 70.71 74.42 96.37 88.18 91.26 87.82 81.01 60.83 63.82 64.28 81.91

w text
ALT→CT 94.18 95.62 95.53 84.57 78.56 96.30 91.97 94.82 89.07 86.65 70.02 76.60 78.97 87.14
ALT→MR 96.06 95.99 95.85 81.00 78.55 97.40 90.92 92.28 90.20 87.03 67.38 66.32 70.30 85.33

Setting
(SwinUNETR) Cat. Dice (%) ↑

Avg.↑
SPL RKI LKI GBL ESO LIV STO AOR IVC PAN RAD LAG DUO

w/o text

CT→CT 94.02 95.39 95.22 82.41 77.57 95.89 88.76 94.50 88.25 84.61 64.33 71.17 73.67 85.06
ALT→CT 94.49 95.03 95.11 79.39 78.35 95.98 88.00 94.05 88.17 88.17 62.95 72.44 73.18 85.02
MR→MR 95.73 95.06 94.75 69.94 75.30 96.24 84.58 90.35 87.34 81.71 56.97 57.47 63.67 80.70
ALT→MR 95.79 95.81 95.42 67.03 76.24 96.28 86.19 91.83 87.58 83.02 62.17 65.22 64.51 82.08

w text
ALT→CT 95.32 95.75 95.43 84.24 77.56 96.49 90.04 94.05 88.42 84.91 69.03 72.92 75.81 86.15
ALT→MR 96.00 95.84 95.70 68.80 76.30 96.57 88.31 91.32 89.38 84.41 65.52 67.23 68.43 83.37

Table 9: Dice scores on AMOS dataset with balanced data splitting of MulModSeg using UNet
and SwinUNETR backbones. Results are shown for settings without text embedding (w/o text)
and with text embedding (w text) across various training and testing scenarios. Green and blue
color represent the best performance for the CT and MR testing set, respectively.
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Table 10 illustrates the significant performance gains achieved by the MulModSeg framework

using modality-conditioned text embeddings and the ALT procedure for unpaired multi-modal

cardiac substructure segmentation within MMWHS dataset. For the UNet backbone, the ALT +

Text configuration achieves an average Dice score of 91.67 on the CT test set, compared to 90.41

without text embeddings, and an increase from 82.82 to 85.15 on the MR test set. Similar trends

are observed with the SwinUNETR backbone. Additionally, the ALT procedure alone shows im-

proved performance over non-ALT configurations. These results confirm that combining text em-

beddings with ALT significantly enhances the model’s generalization and segmentation accuracy

across modalities. This demonstrates the robustness and effectiveness of the MulModSeg strategy

in diverse cardiac and abdominal multi-organ segmentation tasks.

Setting Avg.↑
Dice of Substructures of Heart (UNet) ↑

MY LA LV RA RV AA PA

w/o text

CT→CT 90.55 90.54 94.25 88.75 87.12 91.53 95.87 85.81
ALT→CT 90.41 90.80 94.56 88.82 85.37 92.00 95.10 86.24
MR→MR 81.04 81.11 85.92 74.72 83.61 87.32 74.63 79.99
ALT→MR 82.82 81.00 87.03 79.03 85.62 88.06 76.90 82.22

w text
ALT→CT 91.67 91.40 95.28 90.82 88.57 91.87 96.50 87.23
ALT→MR 85.15 83.55 89.29 83.27 87.45 88.30 80.52 83.67

Setting Avg.↑
Dice of Substructures of Heart (SwinUNETR) ↑

MY LA LV RA RV AA PA

w/o text

CT→CT 90.87 90.53 95.01 90.49 86.42 90.89 95.95 86.79
ALT→CT 91.11 90.98 94.84 90.26 87.35 92.22 96.07 86.27
MR→MR 83.07 83.17 90.39 81.05 84.44 87.67 76.41 78.36
ALT→MR 83.33 83.07 88.43 81.52 85.88 86.79 76.67 80.94

w text
ALT→CT 91.44 91.10 95.13 90.25 88.00 91.89 96.33 87.36
ALT→MR 83.85 82.48 90.22 82.49 85.32 88.39 77.24 80.79

Table 10: Dice scores with UNet and SwinUNETR backbone for MMWHS dataset with balanced
data splitting. Green and blue color represent the best performance for the CT and MR testing set,
respectively.
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4.5.3 Comparison with State-of-the-Art Methods (Q3)

To benchmark the performance of our MulModSeg framework, we compared it against sev-

eral state-of-the-art methods for cross-modality medical image segmentation on MMWHS dataset

in an unbalanced data splitting setting, focusing on the target modality (CT) using both UNet

and SwinUNETR backbones. Table 11 shows that MulModSeg consistently outperforms existing

methods, achieving the highest average Dice scores of 92.72 for the UNet backbone and 93.31 for

the SwinUNETR backbone. Specifically, MulModSeg demonstrated substantial improvements in

segmenting cardiac substructures such as the left ventricle (LV), left atrium (LA), and ascending

aorta (AA), with Dice scores of 92.73, 93.42, and 94.80 for UNet, and 93.50 and 91.59 for LV

and RA with SwinUNETR, respectively. These results highlight the robustness and precision of

our method, attributed to the innovative use of modality-conditioned text embeddings and the ALT

procedure, which enhance the model’s ability to leverage information from unpaired multi-modal

datasets. This allows MulModSeg to achieve high segmentation accuracy without requiring paired

images or extensive architectural modifications, establishing it as a state-of-the-art solution for

multi-modal medical image segmentation.

4.5.4 Impact of Varying CT to MR Scan Ratios (Q4)

We also explored the impact of varying the ratio of CT to MR scans on the segmentation perfor-

mance to simulate more realistic clinical scenarios. Table 12 presents the Dice scores for different

CT:MR ratios (1:1, 2:1, and 3:1) on AMOS dataset using the UNet backbone. The results indicate

that increasing the number of CT scans relative to MR scans generally enhances segmentation per-

formance. For instance, the average Dice score for the 3:1 CT:MR ratio was 88.92, compared to

87.14 for the 1:1 ratio. This trend is consistent across both CT and MR testing sets, suggesting that
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Model Avg. ↑
Dice of Substructures of Heart (UNet) ↑

MY LA LV RA RV AA PA

Baseline [73] 87.06 87.02 89.22 90.86 83.86 84.60 92.52 81.34
Fine-tune [73] 87.69 87.16 90.40 90.79 84.43 85.26 92.74 83.05
Joint-training[73] 87.43 86.65 90.76 91.23 82.78 84.92 93.02 82.66
X-shape [124] 87.67 87.19 89.79 90.94 85.51 84.44 93.43 82.40
Zhang et al.[151] 88.50 87.81 91.12 91.34 85.14 86.31 94.30 83.42
Li et al.[73] 90.12 89.34 91.90 92.67 87.47 88.14 95.95 85.38
Bastico et al.[9] 90.77 90.06 92.68 93.77 88.22 90.85 94.70 84.52
Ours 92.72 92.32 92.73 89.85 93.42 94.80 95.48 90.46

Model Avg. ↑
Dice of Substructures of Heart (SwinUNETR) ↑

MY LA LV RA RV AA PA

Baseline[151] 85.32 84.79 88.12 89.80 81.04 84.08 77.58 76.36
Fine-tune[151] 86.09 82.57 90.03 87.92 83.29 85.51 90.28 83.06
Joint-training[151] 87.99 86.25 92.07 91.97 85.35 87.98 89.55 82.76
Bastico et al.[9] 89.33 88.13 91.64 92.39 86.36 89.33 93.39 84.05
Ours 93.31 93.15 93.50 91.59 92.20 95.63 95.83 91.27

Table 11: Quantitative comparison with other methods for cross-modality medical image segmen-
tation on the target modality (CT). All the techniques have the same UNet [124] and SwinUNETR
[47] baseline, are trained using 20 MRs and 10 CTs and are evaluated on the test set of MMWHS
dataset. The mean Dice score is reported, as well as the ones for all the heart substructures.

our approach can effectively leverage the availability of more CT data to improve segmentation

accuracy while maintaining robust performance across modalities. Despite only increasing the

number of CTs, we believe that utilizing more MRs in our MulModSeg architecture can achieve a

similar enhancement in performance for both modalities.

4.5.5 Ablation Study

The ablation study (Table 13) confirms the contribution of each component of our MulModSeg

strategy. The combination of text embedding and ALT significantly boosts segmentation perfor-

mance, with the highest mean Dice scores observed for both CT (87.14) and MR (85.33) testing

sets. Furthermore, our model maintains a balance between performance and complexity, as indi-
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Ratio of CT:MR
AMOS-CT Testing Cat. Dice ↑

Avg.↑
SPL RKI LKI GBL ESO LIV STO AOR IVC PAN RAD LAG DUO

MulModSeg

1:1 94.18 95.62 95.53 84.57 78.56 96.30 91.97 94.82 89.07 86.65 70.02 76.60 78.97 87.14
2:1 95.23 95.72 96.01 85.02 80.07 96.40 92.04 95.07 89.91 86.65 71.93 76.75 80.80 87.82
3:1 95.72 96.14 96.22 86.69 83.85 97.22 93.77 95.39 90.29 87.99 72.48 79.30 80.89 88.92

Ratio of CT:MR
AMOS-MR Testing Cat. Dice ↑

Avg.↑
SPL RKI LKI GBL ESO LIV STO AOR IVC PAN RAD LAG DUO

MulModSeg

1:1 96.06 95.99 95.85 81.00 78.55 97.40 90.92 92.28 90.20 87.03 67.38 66.32 70.30 85.33
2:1 96.42 95.94 95.81 76.11 79.30 97.50 90.93 92.54 90.83 85.84 64.24 72.01 72.53 85.38
3:1 96.40 96.06 96.18 77.14 79.56 97.58 91.17 92.15 90.59 86.62 64.28 71.42 72.28 85.49

Table 12: Dice scores for abdominal multi-organ segmentation on AMOS dataset using the UNet
backbone, with varying CT to MR scan ratios (1:1, 2:1, and 3:1). Results show the impact of
different data ratios on segmentation performance.

cated by the model parameters and inference time (Table 14).

Text Emb. Training Avg. Dice↑ (CT) Avg. Dice↑ (MR)

� ALT 87.14 85.33
� ALT 82.50 81.91
� CT 86.40 69.72
� MR 60.53 82.70
� CT 81.23 55.45
� MR 46.64 78.85

Table 13: Ablation study for the MulModSeg strategy. �: with, �: without. The bolded text
represents the best performance in AMOS testing sets with UNet backbone.

4.6 Conclusion

In this chapter, we introduced MulModSeg, a multi-modal segmentation strategy enhancing

CT and MR medical image segmentation. MulModSeg leverages modality-conditioned text em-

beddings and an alternating training (ALT) procedure, integrating modality-specific information

into existing encoder-decoder frameworks without significant architectural changes. Extensive ex-

periments showed that MulModSeg significantly improves segmentation accuracy and robustness

over state-of-the-art methods, achieving higher Dice scores for abdominal multi-organ and cardiac

substructure segmentation tasks. The method’s adaptability to different imaging modalities and
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Text Emb. Backbone Prams. (M) Time (s)

� UNet 19.4 3.272
� UNet 19.1 2.402
� SwinUNETR 62.6 4.197
� SwinUNETR 62.2 3.387

Table 14: Model parameters (in millions) and inference time per case (in seconds) for AMOS CT
testing set. Comparison of UNet and SwinUNETR backbones with and without text embedding.
�: with, �: without.

balanced/imbalanced training scenarios across unpaired datasets ensure practical clinical applica-

tion. This flexible strategy improves diagnostic accuracy and medical image analysis, with future

work aiming to extend its application to other imaging modalities and clinical scenarios.
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CHAPTER 5 SUMMARY AND FUTURE OUTLOOK

5.1 Summary

This dissertation has embarked on a transformative journey in the realm of medical image seg-

mentation, aiming to overcome the inherent limitations of CNNs through the adoption of transformer-

based models. The three significant contributions presented in this dissertation, namely FocalUNETR,

SwinAttUNet, and MulModSeg.

FocalUNETR, introduced in Chapter 2, emerged as a pioneering 2D transformer-based model

meticulously designed to address the challenges inherent in medical image segmentation, particu-

larly in the domain of CT scans. By incorporating focal self-attention mechanisms, FocalUNETR

not only improved segmentation accuracy but also redefined the standards of precision in medical

image analysis. This innovation marked a crucial departure from conventional CNN approaches,

ushering in a new era of transformative possibilities. Despite FocalUNETR’s success, its appli-

cation is currently limited to 2D-based single-organ segmentation. Owing to the challenges in

designing an efficient 3D version of the focal SA, a viable 3D-based multi-organ segmentation

approach remains unachievable.

In Chapter 3, SwinAttUNet, further extended the boundaries of this research into the 3D realm

of multi-organ segmentation. This model, based on transformer principles, efficiently processed

intricate 3D medical images while preserving essential spatial relationships. Its remarkable per-

formance surpassed that of conventional methods, underscoring its potential to revolutionize 3D

medical imaging and analysis. However, it’s important to acknowledge that SwinAttUNet’s train-

ing involves a relatively smaller number of medical images. Given the abundance of labeled natural

images, there’s a pressing need to explore more effective ways to leverage these resources to further
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advance the field of medical image segmentation.

Chapter 4 presented MulModSeg to address the challenge of the emerging need for robust

segmentation across diverse medical imaging modalities. It incorporates two key innovations: a

modality-specific text embedding via CLIP model that adds modality awareness to existing seg-

mentation frameworks without significant computational overhead or structural modifications, and

an alternating training method that facilitates the integration of essential features from unpaired im-

ages. Applied to both FCN and Transformer-based models with extensive experiments, MulMod-

Seg demonstrates superior performance in segmenting abdominal multi-organ and cardiac sub-

structures compared to the existing strategies.

In summary, these contributions signify a promising future in medical image segmentation. The

integration of advanced deep learning methods i.e., transformer-based models promises to unlock

new frontiers of accuracy and efficiency. As we conclude this dissertation, we recognize the pro-

found impact it is poised to have on the future of medical image analysis, ultimately contributing

to enhanced patient care and well-being on a global scale.

5.2 Future Outlook

The future outlook for medical image segmentation, building upon the foundations laid by the

three papers presented in this dissertation, holds tremendous promise and aligns with the imperative

to address three key areas in the field.

Firstly, the development of Universal Medical Image Segmentation Models is pivotal. Ex-

isting models often struggle when applied to new datasets containing previously unseen organs,

underscoring the need for models that generalize across diverse medical imaging scenarios. The

groundwork laid by FocalUNETR and SwinAttUNet showcases the potential of transformer-based
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models in achieving this universality. Future research should focus on creating versatile models

that adapt seamlessly to various medical imaging contexts, reducing the need for dataset-specific

architectures and expediting the deployment of accurate segmentation solutions.

Secondly, the integration of Multimodal Learning for Medical Image Segmentation offers a

compelling solution to the challenges posed by the diverse range of medical image modalities.

Incorporating robust language features alongside visual data, as exemplified in the MulModSeg

architecture, can enhance the reliability of segmentation results. Future research should explore

innovative strategies for fusing both visual and language modalities, leveraging the strengths of

each to improve the overall robustness of segmentation models. This multimodal approach holds

the potential to revolutionize medical image segmentation, making it more adaptable, interpretable,

and capable of handling the intricacies of modern healthcare imaging.

Lastly, the concept of Foundation Models for Medical Image Segmentation, inspired by the

success in natural language processing and natural image domains, presents an exciting avenue

for exploration. These models, trained on vast and diverse datasets with a consistent learning

objective, have the potential to learn shared concepts that prove robust during inference across

different datasets and modalities. Future work should delve deeper into the creation of specialized

foundation models tailored to the medical domain. These models can serve as the cornerstone for

more resilient and accurate medical image segmentation, setting new standards for precision and

reliability.

In summary, the future of medical image segmentation is poised to advance on multiple fronts,

guided by the principles of universality, multimodal learning, and foundation models. Researchers

and practitioners have the opportunity to shape the future of healthcare diagnostics and treatment

planning, ultimately benefiting patients worldwide.
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APPENDIX A: DATA PROCESSING AND VISUALIZATION

The combination of these data processing and visualization techniques facilitated the effec-

tive analysis and segmentation of medical images, contributing to the advancements in automated

medical image analysis presented in this dissertation.

Data Collection

Segmentation and
Labeling

Preprocessing

Multiple Modalities
(CT, MRI)

Data Sources (Public
repositories, Medical

institutions)

Normalization
(standardizing pixel

values)

Resampling
(consistent spatial

resolution)

Cropping and Padding
(focus on regions of

interest)

Elastic
Transformations 

Scaling and
TranslationRotation and Flipping Data Augmentation

Expert radiologists
creating ground truth

labels

Quality checks for
accuracy and
consistency

Overall Workflow

Figure 14: A workflow for medical image data processing for developing deep learning models.

Data Processing

The data processing workflow applied in this dissertation focused primarily on the prepara-

tion and transformation of medical imaging data for effective segmentation and analysis and is

summarized in Figure 14. The steps involved in data processing are as follows:
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Data Collection

Medical imaging data were collected from multiple modalities, including Computed Tomog-

raphy (CT) and Magnetic Resonance Imaging (MRI). These datasets were sourced from publicly

available medical image repositories and through collaborations with medical institutions.

Segmentation and Labeling

Ground truth labels for segmentation tasks were created by expert radiologists. These labels

served as the benchmark for training and evaluating the segmentation models.

Preprocessing

To train deep learning models we have to perform some preprocessing for the collected medical

images. It involved several steps to ensure the data was in an optimal format for analysis:

• Normalization: Image intensities were normalized to standardize the pixel values across

different scans, which helps in reducing the variability due to different imaging conditions.

• Resampling: Images were resampled to a consistent spatial resolution to ensure uniformity

in the analysis and to facilitate the integration of data from different sources.

• Cropping and Padding: Regions of interest were cropped to focus on specific anatomical

areas, and padding was applied to maintain a consistent input size for the neural networks.

Data Augmentation

To enhance the robustness of the model and to prevent overfitting, data augmentation tech-

niques were employed:

• Rotation and Flipping: Random rotations and flips were applied to the images to simulate

different orientations and improve the model’s generalization.
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• Scaling and Translation: Variations in scale and translation were introduced to make the

model invariant to size and positional changes.

• Elastic Transformations: Elastic deformations were used to mimic realistic variations in

anatomical structures.

Data Visualization

Effective visualization techniques were critical for the interpretation and validation of the seg-

mentation results. The following visualization methods were utilized:

Slice-wise Visualization

For volumetric data, slice-wise visualization allowed the inspection of individual 2D slices

from the 3D volume. This method was particularly useful for verifying the accuracy of segmenta-

tion boundaries on a per-slice basis.

3D Volume Rendering

3D volume rendering provided a comprehensive view of the segmented regions within the

entire volumetric scan. This technique enabled the visualization of complex anatomical structures

and the spatial relationships between different organs and tissues.

Overlay Visualization

Segmented regions were overlaid on the original images to visually assess the accuracy of the

segmentation. Different colors were used to distinguish between various anatomical structures,

making it easier to identify segmentation errors.
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APPENDIX C: DECLARATION OF USING AIGC

For the role of AIGC in this dissertation, I used ChatGPT solely for grammar checking, proof-

reading, and revising content I have already written. I did not use any AIGC tools to generate

creative content.
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Medical image segmentation is a crucial process in medical imaging analysis, enabling precise

delineation of anatomical structures and pathological regions. This dissertation explores the evo-

lution and application of advanced deep learning models, specifically focusing on the integration

of transformers and convolutional neural networks (CNNs) for enhanced medical image segmen-

tation. The primary goal is to improve segmentation accuracy and efficiency in clinical settings,

particularly for CT and MRI images.

The dissertation is structured around three key innovations. First, we introduce FocalUNETR,

a novel transformer-based architecture designed to address the limitations of traditional CNNs

in capturing long-range dependencies and global context in 2D CT-based prostate segmentation.

FocalUNETR employs focal self-attention mechanisms and incorporates an auxiliary boundary-

aware regression task to enhance segmentation precision, particularly in cases with unclear bound-

aries. Second, we present SwinAttUNet, a hybrid architecture combining CNNs and Swin Trans-

formers for automatic 3D multi-organ segmentation on CT images. This approach leverages the

local feature recognition capabilities of CNNs and the global contextual understanding of trans-
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formers. Third, we develop MulModSeg, a multi-modal segmentation strategy aimed at improving

the segmentation of unpaired CT and MRI images. MulModSeg enhances feature extraction and

model robustness by incorporating modality-conditioned text embedding and an alternating train-

ing procedure.

Extensive experiments on private and public datasets validate the effectiveness of these pro-

posed methods. FocalUNETR achieves superior performance in 2D prostate segmentation, while

SwinAttUNet outperforms state-of-the-art 3D segmentation models in both quantitative and qual-

itative evaluations. MulModSeg shows marked improvements in multi-modal segmentation tasks,

highlighting its potential for clinical applications. This dissertation provides comprehensive frame-

works for developing more accurate, efficient, and robust segmentation models, paving the way for

future advancements in medical imaging and diagnostics.
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