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1

CHAPTER 1 INTRODUCTION

1.1 Background

Artificial Intelligence (AI) nowadays influences all areas of daily human activities,

demonstrating state-of-the-art performance in various areas, such as industry, health,

natural language processing, space exploration, and science [131]. Furthermore, as our

society moves increasingly towards being AI-centric, the dependence on AI in high-stakes

areas, such as healthcare, business, government, education, and justice, emphasizes the

need for its trustworthiness [113]. Ensuring trust in AI is vital for maintaining public

confidence and achieving sustainable integration of these technologies into the fabric of

our society. The growing societal consciousness about the importance of Trustworthy AI

[136] highlights the urgency to develop systems that are not only efficient and innovative

but also transparent, fair, robust, accountable, etc.

1.2 Trustworthy AI

In recent years, Trustworthy AI has attracted increasing attention from government

bodies and various scientific communities [113]. It refers to the development and deploy-

ment of AI systems that are reliable, ethical, and transparent, ensuring that they align with

human values and societal norms. The goal of Trustworthy AI is to strengthen human trust

in AI systems, allowing humans and societies to develop, deploy, and use AI systems without

fear and doubt [273].

1.3 Trustworthy AI Principles

Trustworthy AI encompasses several key principles, such as accountability, safety and

robustness, transparency and explainability, fairness, privacy, and sustainability, as shown in
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Figure 1: Trustworthy AI Principles [273]

Figure 1. These principles emphasize the protection of individual rights and the prevention

of harm, highlighting the need for AI systems to be designed and operated in a manner that

is comprehensible and explainable to humans [136, 273]. This reflects a commitment to

creating AI that not only boosts efficiency and innovation but also upholds human dignity,

diversity, and the democratic values of our society [113].

1.3.1 Inclusive Growth, Sustainable Development, and Well-being

In the context of Trustworthy AI, inclusive growth, sustainable development, and well-

being play critical roles in ensuring that AI technologies are developed and deployed

responsibly and ethically [290].
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Inclusive growth emphasizes the importance of making the benefits of AI accessible

to all, regardless of socioeconomic status, geographic location, or demographic factors.

This means designing AI systems that are fair, unbiased, and equitable, ensuring that

advancements in AI do not exacerbate existing inequalities but rather contribute to reducing

them [50]. Sustainable development involves creating AI systems that are environmentally

friendly and resource-efficient. It requires integrating sustainability into the lifecycle of AI,

from development and deployment to maintenance and disposal. This includes minimizing

the environmental impact of AI technologies, such as reducing energy consumption and

carbon emissions associated with AI computations [91]. Well-being focuses on the positive

impact of AI on human life, ensuring that AI technologies enhance the quality of life,

improve health outcomes, and support mental and social well-being [244].

Together, these principles guide the development of AI systems that are both techni-

cally reliable and ethically responsible, aligning with broader objectives of social justice,

environmental care, and the well-being of humanity.

1.3.2 Accountability

Accountability ensures that AI systems and their actors are responsible for the outcomes

and impacts of their technologies. This concept implies a clear attribution of responsibility,

where developers, operators, and users of AI systems can be held answerable for their

actions and decisions [43]. Accountability runs through the entire lifecycle of an AI

system, from design and development to deployment and usage, requiring transparent

processes and clear documentation of decisions and methodologies [288]. This approach

enables traceability, facilitating the identification and rectification of issues when they

arise. Moreover, accountability in AI necessitates adherence to ethical standards and legal
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regulations, ensuring AI systems do not cause harm or injustice. By fostering a culture

of accountability, trust in AI systems is strengthened, as stakeholders know that there are

mechanisms in place to address any adverse effects and that AI is being used responsibly and

ethically [258]. This commitment to accountability is essential for building and maintaining

public confidence in AI technologies, paving the way for their beneficial and widespread

adoption.

1.3.3 Robustness, Security, and Safety

As AI systems become increasingly integrated into critical aspects of society, ensuring

their robustness, security, and safety has become paramount. Trustworthy AI encompasses

these three critical principles, aiming to create systems that are reliable, resilient, and

ethically sound. Briefly, robustness refers to an AI system’s ability to perform reliably under

various conditions, including unexpected inputs and adversarial attacks [96, 146, 198].

Security involves protecting AI systems from malicious threats and unauthorized access,

ensuring the integrity and confidentiality of data and operations [35]. Safety, on the

other hand, is about preventing harm that might result from the AI system’s actions,

particularly in high-stakes environments such as healthcare, transportation, and finance

[15, 206, 205, 203].

Robustness involves designing AI systems that can maintain their performance despite

uncertainties and perturbations. This includes handling noise in the data, dealing with

incomplete information, and resisting adversarial attacks [237]. Techniques to enhance

robustness include adversarial training, where models are trained on data that includes

adversarial examples [63, 198] and the use of robust optimization methods [145, 29].

Recent studies have explored various methods to achieve robustness, such as the devel-
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opment of algorithms that are less sensitive to data distribution shifts [239, 47] and the

implementation of ensemble methods that combine multiple models to reduce the impact

of individual model weaknesses [243, 190].

Security focuses on protecting systems against threats that can compromise their

functionality and data integrity. This includes defending against adversarial attacks, where

malicious actors attempt to deceive AI models with carefully crafted inputs, and ensuring

data privacy and confidentiality [114]. Encryption techniques [250], secure multiparty

computation [67], and federated learning [141] are some of the methods employed to

enhance AI security. Studies in this field highlight the evolving nature of threats and the

continuous need for advanced defensive mechanisms. Researchers are also investigating

the implications of quantum computing on AI security, as it presents both new challenges

and potential solutions [5].

Safety ensures systems operate without causing unintended harm. This involves rig-

orous testing and validation to ensure that AI behaviors align with human values and

ethical standards. In high-risk domains, such as autonomous driving or medical diagnosis,

safety measures include the use of formal verification techniques and fail-safe mechanisms

that activate in case of system failure [71]. Ongoing research is focused on developing

standardized frameworks and guidelines for AI safety, as well as exploring the societal

impacts of AI deployment [80].

Robustness, security, and safety are critical components of Trustworthy AI, ensuring that

AI systems are reliable, protected against malicious threats, and operate without causing

harm. Recent research and interdisciplinary collaboration are essential to advancing the

state of Trustworthy AI and ensuring that AI systems can be trusted to operate effectively
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and ethically in real-world environments [207, 215].

1.3.4 Transparency and Explainability

Transparency and explainability aim at fostering trust and understanding between AI

systems and their users. Transparency refers to the clarity and openness with which an AI

system’s operations, decisions, and underlying algorithms are communicated. It involves

making the workings of AI systems accessible and comprehensible to stakeholders, including

developers, regulators, and end-users [129]. Explainability, on the other hand, focuses on

the ability of an AI system to provide clear and understandable explanations for its decisions

and actions [101, 281, 204, 75, 201].

Transparency involves several key aspects, including disclosing data sources, model

architectures, training processes, and decision-making criteria. Transparent AI systems

allow stakeholders to scrutinize and understand how inputs are processed into outputs,

thereby enhancing trust and facilitating compliance with regulatory standards. Techniques

to improve transparency include using model documentation practices such as model cards,

which provide detailed descriptions of model performance, limitations, and intended use

cases [100, 37]. Additionally, initiatives like the AI Incident Database aim to publicly

document and analyze failures and incidents involving AI systems to improve transparency

and learning within the AI community [168].

Explainability is critical for demystifying the often complex and opaque nature of

AI systems, particularly those based on deep learning and other advanced techniques.

Explainable AI (XAI) methods are designed to produce human-understandable insights

into how AI models make decisions [281]. Techniques for achieving explainability include

feature importance analysis, which identifies the most influential factors in a model’s
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decision-making process [161], and local interpretable model-agnostic explanations (LIME)

[217], which provide simplified approximations of complex models for specific instances.

Research in this field has also explored the development of inherently interpretable models,

such as decision trees [18, 301] and rule-based systems [256], which offer straightforward

and intuitive explanations by design.

Transparency and explainability are essential components of Trustworthy AI, ensuring

that AI systems are not only effective but also understandable and accountable. By enhanc-

ing transparency, stakeholders can gain insight into the data and processes underpinning

AI systems, while explainability provides clear and comprehensible explanations for AI

decisions. As AI continues to permeate various aspects of society, the importance of trans-

parency and explainability in fostering responsible and ethical AI development cannot be

overstated.

1.3.5 Human-Centered Values and Fairness

As AI systems increasingly impact various facets of daily life, ensuring that they align

with human-centered values and fairness has become a critical focus of Trustworthy AI.

Human-centered values encompass ethical principles and societal norms that prioritize the

well-being, autonomy, and dignity of individuals [26]. Fairness in AI refers to the impartial

and equitable treatment of all individuals and groups, preventing biases and discrimination

that could arise from deploying these systems [169]. Together, these concepts aim to build

AI systems that not only perform effectively but also respect and uphold human rights and

ethical standards.

Incorporating human-centered values into AI involves designing systems that prioritize

the needs, preferences, and rights of users. This requires a multidisciplinary approach,
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integrating insights from ethics, psychology, sociology, and human-computer interaction.

Human-centered AI systems are designed to be user-friendly, accessible, and respectful of

privacy and autonomy [26]. Techniques to embed human-centered values include partici-

patory design, involving stakeholders in the development process, and ethical guidelines

that ensure AI applications align with societal values and legal standards [235].

Fairness ensures that systems do not perpetuate or exacerbate existing biases and

inequalities [199]. This involves addressing biases that may arise in data collection, model

training, and decision-making processes [46]. Techniques to enhance fairness include bias

mitigation algorithms, which aim to reduce or eliminate biases in AI outputs, and fairness-

aware machine learning, which incorporates fairness constraints into model development

[169].

Human-centered values and fairness are integral components of Trustworthy AI, ensuring

that AI systems are not only effective but also ethical and equitable [133]. By prioritizing

the well-being and rights of individuals, human-centered AI fosters trust and acceptance

among users. Fairness ensures that AI systems treat all individuals and groups impartially,

mitigating biases and preventing discrimination.

1.4 Trustworthy AI Throughout AI System Lifecycle

The development lifecycle of a standard AI system can typically be divided into several

key phases: data preparation, algorithm design, development, deployment, and manage-

ment [22]. This section reviews several critical algorithms, guidelines, and government

regulations that are closely relevant to the trustworthiness of AI products in each stage of

their lifecycle. The goal here is to offer a systematic approach and a straightforward guide
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Table 1: Trustworthy AI Approaches.

Lifecycle Approaches

Data Preparation Data Collection
Data Preprocessing

Algorithm Design
Enhacing Robustness
Improving Explainability
Ensuring Fairness

Development

Functional Testing
Performance Benchmarking
Simulation
Formal Verification

Deployment

Anomaly Monitoring
Human-AI Interaction
Fail-Safe Mechanism
Hardware Security

Management
Documentation
Auditing
Cooperation

for practitioners from diverse backgrounds to create Trustworthy AI, as shown in Table 1.

1.4.1 Data Preparation

Modern AI systems are largely data-driven. The appropriate management and exploita-

tion of data not only improves an AI system’s performance but also affects its trustworthiness.

Generally, we focus on two major aspects of data preparation: data collection and data

preprocessing.

Data collection is a crucial part of the AI system lifecycle. A well-thought-out strat-

egy for collecting data can significantly contribute to increasing the trustworthiness of

AI, particularly in principles like fairness and explainability. For instance, bias mitigation

techniques during data collection are designed to reduce biases that may be present in the

data, which can otherwise lead to unfair outcomes when the AI system is deployed [169].

Bias mitigation techniques can be broadly categorized into two main types: debias sampling

and debias annotation. Debias sampling involves selecting the data points to be used or
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annotated, whereas debias annotation involves selecting the appropriate annotators [120].

Data collection also plays a crucial role in creating explainable AI systems. For example,

incorporating an explanation task into the AI model can aid in clarifying the model’s inter-

mediate features [287]. Maintaining data provenance involves meticulously documenting

the lineage of data, which includes its origins, dependencies, contextual information, and

the processes it undergoes [106]. By meticulously tracking the data journey at a detailed

level, data provenance significantly enhances an AI system’s transparency, reproducibility,

and accountability.

Data preprocessing helps remove inconsistent pollution of the data that might harm

model behavior and sensitive information that might compromise user privacy before

feeding data into an AI model, such as anomaly detection [248], data anonymization [32],

and differential privacy [77]. Recent research has demonstrated that anomaly detection (or

outlier detection) is beneficial in meeting certain requirements for AI trustworthiness, such

as robustness [51] and security [205]. Data anonymization modifies the data to ensure

that the protected private information cannot be recovered. This process involves altering

or masking personal identifiers, such as names, addresses, and social security numbers,

to prevent the possibility of re-identifying individuals from the dataset [225, 166, 182].

Differential privacy (DP), which can be formally defined by ϵ-differential privacy, shares

information of groups within datasets while withholding individual samples. It measures

how much a (randomized) statistical function on the dataset reflects whether an element

has been removed [76]. DP is also used to improve the robustness of AI models against

adversarial samples [132].
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1.4.2 Algorithm Design

Researchers are actively engaged in creating cutting-edge algorithms aimed at addressing

key principles of Trustworthy AI, including enhancing robustness, improving explainability

and interpretability, and ensuring fairness, and others [113].

Enhancing Robustness The robustness, including corruption robustness [174] and adver-

sarial robustness [69], of AI models is significantly influenced by their training data and

the algorithms applied.

Corruption robustness refers to a model’s ability to maintain its performance even

when faced with noisy or corrupted data [174]. In real-world scenarios, data can often

be imperfect, containing errors, outliers, or artifacts. A robust model should be able to

make accurate predictions or classifications despite the presence of such corruption in the

input data. Data augmentation, which expands the training set with random low-level

transformations, has become a central technique achieving large robust improvements

[99, 158, 222, 223]. Data poisoning is a widely used corruption attack, which contaminates

the training data to mislead model behavior. In addition to avoiding suspicious data during

the data sanitization stage, developing defensive algorithms to counteract data poisoning

has become an active area of research in recent studies [148].

Adversarial robustness focuses on a model’s ability to withstand deliberate attempts

to manipulate or deceive it [69]. Adversarial attacks involve making subtle changes to

the input data to induce the model to produce incorrect results [165]. After discovering

adversarial attacks, it has been well-known that augmenting adversarial examples into

training data is an effective defensive strategy. Commonly known as adversarial training, this
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augmentation can be implemented either directly by including both original and adversarial

samples in the training process [127], or indirectly through the use of a regularization

term that effectively represents adversarial samples [90]. Recent studies, in addition to

using regularization terms that implicitly account for adversarial examples, have delved

into network architectures [92] and further regularization methods [219] to mitigate DNNs’

vulnerabilities to adversarial attacks. The primary goal of these regularization methods is

to ensure that small perturbations do not significantly change the model’s output. While

adversarial training and regularization techniques do improve the robustness of AI models,

they cannot provide a theoretical assurance of the models’ reliability. This limitation has

prompted investigations to formally verify the robustness of models, known as certified

robustness. Current research in this area concentrates on robust training methods to

effectively handle perturbations [65, 272, 198].

Improving Explainability and Interpretability Explainable AI, including explainability

and interpretability, has become a significant focus of study in recent times, with a range

of fully or partially explainable AI models being explored to maximize their potential and

performance [281].

Explainability refers to the ability of an AI model to provide explanations or justifications

for its predictions or decisions in a way that is understandable to humans. The goal

of explainability is to make the model’s inner workings and reasoning processes more

transparent, allowing users to gain insights into why a specific prediction was made. This is

often achieved through generating explanations, such as feature importance scores, textual

descriptions, or visualizations, highlighting the factors influencing the model’s output. Much
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of the research in this area has focused on post-hoc model explanation methods. Various

approaches have been proposed to approximate ML models, such as random forests [249]

and neural networks [68], as an explainer approximation aiming to mimic the behavior of a

given model with explainable models. Feature importance has been a continually active area

of research on explainability. A key method involves using local linear approximations to

determine the impact of each feature on predictions, such as LIME [217], and SHAP [161].

The use of gradients to illustrate the contribution of features to the predicted outcome has

attracted considerable attention, particularly in the study of DNN explainability [229, 238].

In fields like NLP or CV, gradients or their variations are employed to trace back the model’s

decision to the most relevant input, in the form of saliency maps and sentence highlights

[236, 247, 296, 204]. Feature introspection focuses on delivering a semantic understanding

of intermediate features. A notable approach in this area involves adding a branch to a

model, which produces an explanatory result that humans can easily interpret [151]. An

example-based explanation explains the outcomes of the AI model using the sample data.

For example, an influential function was borrowed from robust statistics in [121] to find the

most influential data instance for a given outcome. Counterfactual explanation [115, 199]

works in a contrary way by finding the boundary case to flip the outcome. This helps users

better understand the decision surface of the model.

Interpretability goes a step further by not only providing explanations but also ensuring

that those explanations are not only understandable but also aligned with human mental

models and reasoning [88]. An interpretable AI model not only offers insights into its

decision-making process but does so in a way that aligns with human intuition and expecta-

tions. Achieving interpretability often involves simplifying complex model architectures,
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ensuring that the model’s behavior is consistent with domain knowledge, and using inter-

pretable features and representations. Over the years, several self-explainable models have

been studied in ML, such as k-nearest neighbors (KNN), linear/logistic regression, decision

trees/rules, and probabilistic graphical models [20, 38]. Different from post hoc methods,

alternative methods suggest making alterations to either the architectures [83, 276, 10, 39],

the loss functions [300, 59, 103], or both [17, 55, 187, 201] to improve interpretability.

These methods usually depend on factors like the presence of ground truth explanations,

the accessibility of annotations concerning incorrect explanations for specific inputs, or

external knowledge sources.

Ensuring Fairness Group fairness and individual fairness are two important concepts

in the field of fairness and ethics in Trustworthy AI [36]. They address different aspects

of ensuring that AI systems are fair and do not discriminate against individuals or groups

based on certain sensitive attributes like race, gender, or age.

Group fairness, also known as demographic or group-based fairness, focuses on the

fairness of AI systems concerning entire groups or demographic categories of individuals.

The primary goal of group fairness is to prevent systemic bias or discrimination against

specific groups, such as racial or gender minorities, in the outcomes of AI algorithms.

Methods for ensuring group fairness in AI models can be implemented at various points

during the algorithm development process: by taking action before inputting data into

the model (pre-processing), during the training phase of the model (in-processing), or

by adjusting the model’s predictions after its training is complete (post-processing) [169].

Common pre-processing approaches, such as adjusting sample importance [7], adjusting
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feature importance [44, 57], and data augmentation [66, 199], are helpful especially if

debiasing the data collection is not sufficient or no longer possible, such as resampling and

re-weighting. In-processing strategies for reducing bias in AI models involve methods like

adjusting the importance of samples [124] and employing optimization-related techniques

[8, 48]. Similar to pre-processing methods, in-processing can also utilize techniques such

as re-weighting [124] and adversarial learning [49], which offer the potential to directly

debias the model. This is done by using model parameters or predictions that are not yet

fully optimized, allowing for more targeted adjustments to reduce bias. Alternatively, model

fairness can be enforced more directly via optimization techniques. For instance, quantita-

tive fairness metrics can be used as regularization [8] or constraints for the optimization

of the model parameters [48]. Post-processing techniques can be applied for debiasing,

often with the help of auxiliary models or hyperparameters to adjust the model output

[118, 102].

Individual fairness, on the other hand, is concerned with treating individuals one-to-

one, regardless of their membership in any particular group [81]. It focuses on ensuring that

similar individuals receive similar outcomes or predictions from an AI system, regardless

of their sensitive attributes. Individual fairness is typically precisely defined using two

distance metrics. The first is a similarity metric: a distance metric that measures the degree

of similarity between individuals. The second metric measures the difference in the chances

two individuals have of obtaining a decision’s various outcomes [81]. Similar to group

fairness algorithms, several approaches to individual fairness are in-processing methods

[109, 293, 294, 254]. [193] proposed a post-processing problem as a graph smoothing

problem corresponding to graph Laplacian regularization that preserves the desired “treat
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similar individuals similarly” interpretation.

In essence, these principles, i.e., explainability, robustness, and fairness, work in synergy

to create Trustworthy AI systems. Explainability helps uncover potential fairness issues and

improves model robustness, while robustness is essential for preventing fairness violations

in the face of unexpected conditions or adversarial attacks. Together, they contribute to

the overall trustworthiness and accountability of AI systems, ensuring that they are ethical,

transparent, and capable of providing fair and reliable outcomes in diverse real-world

scenarios.

1.4.3 Development

Various techniques researched for the development stage can contribute to the trustwor-

thiness of AI systems [13]. In terms of AI trustworthiness, testing serves as an effective

approach to certify that the system is fulfilling specific principles [299]. Benchmarking

is a widely used method to ensure the trustworthiness of systems in various aspects of

interest, particularly when it comes to assessing system performance and stability. This

approach involves setting standards or benchmarks that can be automatically measured,

providing a consistent and objective means to evaluate how well a system is performing

with these predefined criteria [69, 98, 72]. This process is essential for confirming that

systems are reliable and stable across different metrics. For AI systems deployed on em-

bedded or specialized hardware, comprehending their behavior in real-world scenarios is

vital. Hardware-in-the-loop simulations play a crucial role in this context. They enable

developers to assess system performance on the actual chips, sensors, and actuators used

in real-world applications, but within a controlled, simulated environment. This approach

is particularly beneficial for systems where latency and power consumption are critical,



17

such as in autonomous driving systems [40], highlighting the importance of simulations

in ensuring the effectiveness, trustworthiness, and reliability of such advanced systems in

real-world conditions.

1.4.4 Deployment

When AI systems transition from development to deployment in real-world products,

ensuring their trustworthiness becomes crucial. At this stage, various strategies are em-

ployed to maintain system integrity and reliability. One key approach is the integration of

additional components designed to monitor for anomalies, which helps in early detection

and resolution of potential issues. Additionally, developing specific mechanisms for human-

AI interaction is vital. These mechanisms aim to enhance transparency and explainability,

allowing users to understand and trust the decisions made by the AI system. Such steps

are essential in building robust, reliable, and user-friendly AI applications that interact

effectively with their environment and users. As a keying safeguard for the successful

operation of an AI system, monitoring provides the means to enhance the system’s trust-

worthiness in multiple aspects, such as attack monitoring [3], data drift monitoring [208],

and misuse monitoring [107]. Effective human-AI interaction affects the trustworthiness of

an AI system in multiple aspects, such as user interface [234] and user intervention [228].

AI systems deployed across diverse hardware, from servers to mobile devices, face risks like

data tampering and theft due to OS and hardware attacks, compromising their security and

privacy. Various approaches have been studied to address this new threat [283] to enhance

the security of AI systems.
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1.4.5 Management

Appropriate management and governance provide a holistic guarantee that trustworthi-

ness is consistently aligned throughout the lifecycle of an AI system [87]. Documentation is

crucial in enhancing an AI system’s transparency and accountability. Meticulously tracking,

guiding, and auditing the system’s entire lifecycle is a fundamental component in estab-

lishing a trustworthy AI system [210]. Drawing on insights from safety-critical industries

like finance and aerospace, auditing has emerged as an effective method for evaluating

AI systems’ compliance with specific principles. This approach, which assesses whether AI

technologies adhere to established standards and guidelines emphasizes its importance

in ensuring responsible AI deployment [42]. In the industrial context, collaboration with

academia is crucial for rapidly applying new technologies to improve product performance

and mitigate associated risks. Additionally, working with regulatory bodies ensures products

adhere to trustworthiness principles, certifying their compliance. Furthermore, coopera-

tion among industrial enterprises is key to tackling consensus-based challenges like data

exchange, standardization, and ecosystem development. These collaborative dynamics

and their benefits highlight the role of cross-sector partnerships in advancing the field of

Trustworthy AI [23].

1.5 Trustworthy AI Applications

As AI technologies become increasingly integrated into various aspects of our daily

lives, ensuring their trustworthiness is paramount, especially in some high-stake areas,

such as healthcare, financial services, autonomous driving, and education. Trustworthy

AI encompasses principles such as fairness, accountability, transparency, and robustness,
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Figure 2: Different modalities of explanation in an AI-driven diagnostic system [216].

which together aim to create AI systems that can be relied upon to make fair decisions,

explain their reasoning, and operate securely and effectively under diverse conditions. This

section presents various real-world applications of Trustworthy AI, accompanied by several

illustrative examples.

One of the primary applications of Trustworthy AI is in healthcare, where AI systems

are used for diagnosis, treatment recommendations, and patient care management [11].

Ensuring that these systems are trustworthy means that they must be transparent about their

decision-making processes, provide equitable healthcare access, and protect patient data

privacy. For instance, AI-driven diagnostic tools must be trained on diverse datasets to avoid

biases that could lead to misdiagnosis in underrepresented groups. Additionally, these tools

must offer clear explanations of their diagnoses to help healthcare professionals and patients

make informed decisions. Figure 2 illustrates the different modalities of explanations in
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an AI-driven diagnostic system [216]. From top to bottom, additional interpretability

information is incorporated, enhancing the reliability of the AI-driven diagnostic system’s

decision-making process. This example clearly highlights the significance of offering detailed

explanations to improve the reliability of AI models.

Another important application of Trustworthy AI is face recognition, which has been one

of the earliest AI techniques widely adopted in real-world scenarios. Compared to other

biometric measurements, the facial feature provides a much more convenient interface for

users to leverage for identification [246]. However, the recent widespread applications of

face recognition bring new challenges and risks, such as malicious attacks, privacy breaches,

and fairness [136]. It is known that conventional face recognition algorithms are biased

in performance on different groups of genders, races, or ages [21]. This problem not only

harms the user experience of specific groups but also harms the societal trust in AI. As

shown in Figure 3, the accuracy percentages highlight disparities in the performance of

Amazon’s facial recognition system, with the highest accuracy for lighter-skinned males

(100%) and the lowest for darker-skinned females (68.6%). This indicates potential bias

in the system, showing it performs less accurately for darker-skinned females compared

to other groups. This biased system can cause serious social issues, such as wrongful

accusations. Addressing these issues requires a concerted effort to improve the fairness and

accuracy of AI systems, ensuring they work equally well for all demographic groups.

In the realm of autonomous vehicles, Trustworthy AI is critical for ensuring safety and

reliability [24]. Autonomous systems must be robust enough to handle various driving

conditions and unpredictable scenarios while making decisions that prioritize human safety.

Trustworthy AI principles guide the development of these systems to ensure they are
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Figure 3: Fairness issue of Amazon’s facial recognition product.

tested rigorously, their decision-making processes are transparent, and they can be held

accountable for their actions. Robustness is one of the most critical requirements for an

autonomous driving vehicle [171]. Poor model performance as well as external attacks both

threaten its safety [240]. Figure [?] illustrates how adversarial attacks can manipulate traffic

signs to confuse autonomous driving systems. A standard STOP sign, easily recognizable by

both humans and autonomous vehicles. Adversarial attacks on this STOP sign with random

noise, though often imperceptible to humans, can cause the recognition algorithms to fail,

as shown in Figure [?]. This highlights the importance of robust and resilient recognition

algorithms that can withstand such adversarial perturbations.

Overall, the applications of Trustworthy AI are vast and diverse, spanning industries

such as healthcare, face recognition, autonomous driving, and beyond. By adhering to the

principles of fairness, accountability, transparency, and robustness, Trustworthy AI aims to

foster public trust and ensure that AI technologies can be beneficial, safe, and reliable. As

the field evolves, ongoing research and development are essential to address new challenges

and ensure that AI systems can be trusted to operate ethically and effectively in real-world

scenarios.
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Figure 4: Adversarial attack on recognizing traffic signs.

1.6 Original Contributions

My research concentrates on three crucial principles of Trustworthy AI: explainability,

fairness, and robustness, along with an emphasis on designing for reliability, which encom-

passes both algorithmic and practical viewpoints, as shown in Table 2. In order to improve

explainability and interpretability, we proposed post-hoc explanation and interpretable-

aware model approaches, significantly advancing the field with our papers, including AttCAT

[204], CGI [199], NeFLAG[188], and IA-ViT [201]. Regarding fairness, both pre-processing

and in-processing debiasing methods are developed in our papers, including CIA [199]

and DSA [200]. Robustness is addressed through certified robustness, adversarial training,

optimization, and evaluation strategies, with significant contributions from our works, such

as GradMASK [198], SGAT [147], PPCL [203], GGI [206], and GBTL [205].



23

Table 2: Contributions to Trustworthy AI.

Principles Approaches Papers

Explainability Post-hoc Explanation AttCAT [204], CGI [199], NeFLAG[188]
Interpretable-aware Model IA-ViT [201]

Fairness Pre-processing Debiasing CIA [199]
In-processing Debiasing DSA [200]

Robustness

Certified Robustness GradMASK [198]
Adversarial Training SGAT [147]
Optimization PPCL [203]
Evaluation GGI [206], GBTL [205]

1.6.1 Explainability

My studies have contributed innovatively to ongoing explainable AI (XAI) research

from diverse directions, including generating post-hoc explanations [204, 199, 188] and

designing interpretable-aware model architecture [201]. Generating post-hoc explanations

involves the use of a set of relevant features, such as pixels, words, or other variables,

aiming to obtain a better understanding of how deep neural networks (DNNs) generate

their outputs. Designing interpretable-aware model architecture refers to the approaches in

which AI models are built with interpretability as a core aspect.

Transformer has emerged as the prevailing AI architecture for both NLP and CV tasks.

However, it is challenging to explain the predictions made by Transformer-based models

due to the intricate nature of the stacked multi-head self-attention structures. We thus delve

into the structure and several three major issues of the existing Transformer explanation

techniques, such as omitting crucial components, disregarding information flow through skip

connections, and the absence of global information integration. To address these issues, we

propose a novel method, named Attentive Class Activation Tokens (AttCAT) with three-fold

advantages in our NeurIPS 2022 publication [204]: first, AttCAT quantifies the impact of
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each token on the class-specific output as explanations via its gradient information, feature

representations, and self-attention weights; second, it also exploits both the self-attention

mechanism and skip connection to explain the inner working mechanism of Transformers

via disentangling information flows between intermediate layers; third, AttCAT is capable

of discriminating positive and negative impacts on the model’s output. Our extensive

experiments demonstrate the superior performance of AttCAT, showcasing its ability to

generalize effectively across various Transformer architectures, evaluation metrics, and

tasks.

In our research presented in IJCAI 2022 [199], we delve into counterfactual examples,

which can provide valuable insights into the decision-making process that underlies the

model. We propose a novel explanation method for DNNs named Counterfactual Gradients

Integration (CGI), which incorporates gradients along an interpolated path simulating

the transition in distributions from the counterfactual example to the original input. By

concentrating on the intended attributes and not being influenced by sensitive attributes,

CGI generates more informative explanations by mitigating the adverse effects of the

sensitive attribute.

Another novel approach published in IJCAI 2023 [188], called NeFLAG, leverages the

concepts of gradient divergence and fluxes to estimate feature attributions, eliminating

the need for a baseline and integration path. NeFLAG converts divergence into gradient

fluxes following the divergence theorem, enabling it to interpret DNN predictions using an

attribution map derived from the efficient aggregation of negative fluxes. Both qualitative

and quantitative experiments demonstrate a superior performance of NeFLAG in explaining

DNN predictions over strong baselines, such as Integrated Gradients (IG) and Adversarial
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Gradient Integration (AGI).

While our novel methods, like CGI and NeFLAG, have demonstrated significant ad-

vancements in generating explanations for the outputs of CNNs, the need for improved

explainability and interpretability becomes even more crucial when considering the promis-

ing performance of ViTs in various CV tasks. Although there has been a surge of interest

in developing post-hoc solutions to explain ViTs’ outputs, these methods do not generalize

to different downstream tasks and various model architectures. Furthermore, if ViTs are

not properly trained with the given data without prioritizing the region of interest, these

post-hoc methods would be less effective. Instead of developing another post-hoc approach,

we introduce a novel interpretable-aware ViT (IA-ViT) that inherently enhances model

interpretability [201]. IA-ViT comprises a feature extractor, a predictor, and an interpreter,

which are trained jointly with an interpretability-aware training objective. Consequently,

the interpreter simulates the behavior of the predictor and provides a faithful explanation.

Our comprehensive experimental results demonstrate the effectiveness of IA-ViT in several

image classification tasks, with both qualitative and quantitative

1.6.2 Fairness

Fairness in Trustworthy AI refers to the ethical principle and practice of ensuring that AI

systems and algorithms are developed, deployed, and used in a manner that is equitable

and non-discriminatory. Recently, fairness learning approaches have been proposed to

prevent unfair or biased outcomes that can harm individuals or groups, particularly those

from marginalized or underrepresented backgrounds. My research on fairness learning

focuses on pre-processing [199] and in-processing approaches [200].

We develop a data augmentation approach named Counterfactual Interpolation Augmen-
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tation (CIA) presented in IJCAI 2022 [199], to enhance both the fairness and explainability

of DNNs. The main purpose of CIA is to de-bias the training data via d-separating the

spurious correlation between the target variable and the sensitive attribute. In the data aug-

mentation process, CIA generates counterfactual interpolations along a path simulating the

distribution transitions between the current input and its counterfactual example regarding

the sensitive attributes. CIA as a pre-processing approach enjoys two advantages: first,

it couples with either plain training or debiasing training to markedly increase fairness;

second, it enhances the explainability of deep neural networks by generating attribution

maps via integrating counterfactual gradients. We demonstrate the superior performance of

the CIA-trained DNN models using both qualitative and quantitative experimental results.

To fully realize the advantages of ViT in real-world applications, recent works have

explored the trustworthiness of ViT, including explainability and robustness. However,

fairness has not yet been adequately addressed in the literature. We establish that the

existing fairness-aware algorithms (primarily designed for CNNs) perform poorly on ViT.

We propose an in-processing approach, named Debiased Self-Attention (DSA), with the

goal of attaining fairness-aware ViT [200]. DSA is a fairness-through-blindness approach

that enforces ViT to eliminate spurious features correlated with the sensitive attributes for

bias mitigation. DSA first leverages adversarial examples to locate and mask the spurious

features in the inputs. Then, it utilizes an attention weights alignment regularizer in

the training objective to encourage learning informative features for target prediction.

Importantly, our DSA framework leads to improved fairness guarantees over prior works on

multiple prediction tasks without compromising target prediction performance.
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1.6.3 Robustness

The robustness principle in the context of Trustworthy AI refers to the ability of AI

systems to perform reliably under a variety of conditions and to withstand both intentional

and unintentional disruptions. This concept is vital for ensuring that AI systems are safe,

secure, and function as intended, even in challenging or unexpected scenarios. Our research

mainly focuses on improving the adversarial robustness of AI systems.

In our work presented in IJCNN 2022 [198], we propose a novel certifiably robust

defense method, named GradMASK, to improve the robustness of tiny RNN models against

different types of attacks covering character-level and word-level perturbations. GradMASK

first intentionally masks the most important words with the largest gradients in the adver-

sarial examples, guaranteeing the masked words make outstanding contributions to the

incorrect predictions. Then, we take the average logits produced by the large RNN model

from the masked adversarial examples for soft-label knowledge distillation in our training

scheme. Thus, our tiny RNN models gain certified robustness via knowledge distillation

and do not need additional adversarial training to improve their robustness.

While adversarial examples are typically seen as attacks, recent research has shown

their benefits for other applications, referred to as “adversarial for good". We demonstrate

adversarial examples can eliminate shortcut learning features that are unrelated to the

target task. We propose a novel saliency-guided adversarial training method [147] for

DNNs to learn more generalizable features, which improves model performance on out-

of-distribution (OOD) test data by using adversarial examples during training to remove

shortcut cues and emphasize salient features.
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In addition to enhancing the robustness of discriminative models, my recent research

has also concentrated on enhancing the robustness of generative models, such as LLMs. We

have proposed novel methods to evaluate and improve the robustness of LLMs. LLMs have

demonstrated impressive performance on various NLP tasks, such as question answering,

and text summarization, to name a few. However, their performance on sequence labeling

tasks like intent classification and slot filling (IC-SF), which is a central component in per-

sonal assistant systems, lags significantly behind discriminative models. Furthermore, there

is a lack of substantive research on the robustness of LLMs to various prompt perturbations.

In our work published in Findings of EACL 2024 [203], we have made three-fold contri-

butions: first, we show that fine-tuning sufficiently LLMs can produce IC-SF performance

comparable to discriminative models; second, we systematically analyze the performance

deterioration of those fine-tuned models due to three distinct yet relevant types of prompt

perturbations, i.e., oronyms, synonyms, and paraphrasing; third, we propose an efficient

mitigation approach, prompt perturbation consistency learning (PPCL), which works by

regularizing the divergence between losses from clean and perturbed samples. Our experi-

ments demonstrate that PPCL can recover, on average, 59% and 69% of the performance

drop for IC and SF tasks, respectively.

More recently, we proposed novel attacks to evaluate the security and safety issues of

LLMs [206, 205]. Specifically, our work [206] reveals the significant security vulnerabilities

of LLMs and emphasizes the necessity for in-depth studies on their robustness. In-context

learning (ICL) has emerged as a powerful paradigm leveraging LLMs for specific down-

stream tasks by utilizing labeled examples as demonstrations (demos) in the precondition

prompts. Despite its promising performance, ICL suffers from instability with the choice and
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arrangement of examples. Additionally, crafted adversarial attacks pose a notable threat to

the robustness of ICL. However, existing attacks are either easy to detect, rely on external

models, or lack specificity towards ICL. This work introduces a novel transferable attack

against ICL to address these issues, aiming to hijack LLMs to generate the target response or

jailbreak. Our hijacking attack leverages a gradient-based prompt search method to learn

and append imperceptible adversarial suffixes to the in-context demos without directly

contaminating the user queries. Comprehensive experimental results across different gen-

eration and jailbreaking tasks highlight the effectiveness of our hijacking attack, resulting

in distracted attention towards adversarial tokens and consequently leading to unwanted

target outputs. We also propose a defense strategy against hijacking attacks through the

use of extra clean demos, which enhances the robustness of LLMs during ICL.

Furthermore, our work [205] highlights the significant security risks present during

the instruction tuning of LLMs and emphasizes the necessity of safeguarding LLMs against

data poisoning attacks. The advent of LLMs has marked significant achievements in

language processing and reasoning capabilities. Despite their advancements, LLMs face

vulnerabilities to data poisoning attacks, where adversaries insert backdoor triggers into

training data to manipulate outputs for malicious purposes. This work further identifies

additional security risks in LLMs by designing a new data poisoning attack tailored to

exploit the instruction tuning process. We propose a novel gradient-guided backdoor

trigger learning (GBTL) algorithm to identify adversarial triggers efficiently, ensuring

an evasion of detection by conventional defenses while maintaining content integrity.

Through experimental validation across various tasks, including sentiment analysis, domain

generation, and question answering, our poisoning strategy demonstrates a high success
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rate in compromising various LLMs’ outputs. We further propose two defense strategies

against data poisoning attacks, including in-context learning (ICL) and continuous learning

(CL), which effectively rectify the behavior of LLMs and significantly reduce the decline in

performance.

1.7 Organization

The remainder of this dissertation is organized as follows: In Chapter 2, we present

our work, named “AttCAT: Explaining Transformers via Attentive Class Activation Tokens",

which proposed a novel approach to generate explanations for the outputs of Transformers.

In Chapter 3, we introduce our work, named “Counterfactual Interpolation Augmentation

(CIA): A Unified Approach to Enhance Fairness and Explainability of DNN", which proposed

a unified approach to enhance fairness and explainability of DNNs. Chapter 4 presents

our work, named ‘Hijacking Large Language Models via Adversarial In-Context Learning",

which proposed novel attacks to uncover the security and safety issues of LLMs. Finally,

Chapter 5 discusses several future research directions related to Trustworthy AI and current

cutting-edge techniques.
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CHAPTER 2 ATTCAT: EXPLAINING TRANSFORMERS VIA ATTENTIVE
CLASS ACTIVATION TOKENS

2.1 Introduction

Transformers have advanced the state-of-the-art on a variety of natural language pro-

cessing tasks [255, 70] and see increasing popularity in the field of computer vision

[74, 157]. The main innovation behind the Transformer models is the stacking of multi-

head self-attention layers to extract global features from sequential tokenized inputs.

However, the lack of understanding of their mechanism increases the risk of deploying

them in real-world applications [188, 64, 218, 202, 198]. This has motivated new re-

search on explaining Transformers output to assist trustworthy human decision-making

[123, 230, 105, 4, 257, 54, 143, 199].

The self-attention mechanism [28] in Transformers assigns a pairwise score capturing

the relative importance between every two tokens or image patches as attention weights.

Thus, a common practice is to use these attention weights to explain the Transformer

model’s output by exhibiting the importance distribution over the input tokens [64]. The

baseline method, shown as RawAtt in Figure 6, utilizes the raw attention weights from a

single layer or a combination of multiple layers [123]. However, recent studies [230, 105, 4]

question whether highly attentive inputs significantly impact the model outputs. Serrano et

al. [230] demonstrate that erasing the representations accorded high attention weights do

not necessarily lead to a performance decrease. Jain et al. [105] suggest that “attention is

not explanation” by observing that attention scores are frequently inconsistent with other

feature importance indicators like gradient-based measures. Abnar et al. [4] argue that

the contextual information from tokens gets more similar as going deeper into the model,



32

[CLS]

"I" 

"like" 

"this" 

"movie" 

"." 

[SEP]
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Figure 5: An illustration of Transformer architecture. The left panel shows a simple
three-layer Transformer model. Each layer consists of a self-attention module and a skip
connection module (shown in the right panel). The input is a sequence of tokens with two
added special tokens, i.e., [CLS] and [SEP]. The third token, ‘like’ (x2), contributes mostly
to the positive sentiment prediction since its attention weighted output is the largest. Size
of the colored circles illustrate the value of the scalar or the norm of the corresponding
vector. Arrows within the circles demonstrate the directions of the vectors.

leading to unreliable explanations using the raw attention weights. The authors propose

two methods to combine the attention weights across multiple layers to cope with this

issue. Their attention rollout method, shown as Rollout in Figure 6, reassigns the important

scores to the tokens through the linear combination of attention weights across the layers

tracing the information flow in Transformer. However, the rollout operation canceled out

the accumulated important scores as some deeper layers have almost uniformly distributed

attention weights. The attention flow method is formulated as a max-flow problem by

dissecting the graph of pairwise attentions. While it somewhat outperforms the rollout

method in specific scenarios, it is not ready to support large-scale evaluations [54].

Recently, Bastings et al. [31] advocate using saliency method as opposed to attention as

explanations. Although some gradient-based methods [147, 97, 30, 62] have been proposed
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to leverage salience for explaining Transformer’s output, most of them still focus on the

gradients of attention weights, i.e., Grads and AttGrads as shown in Figure 6. They suffer

from a similar limitation to the above-mentioned attention-based methods. Layer-wise

Relevance Propagation (LRP) method [27, 178], which is also considered as a type of

saliency method, propagates relevance scores from the output layer to the input. There

has been a growing body of work on using LRP to explain Transformers [257, 54]. Voita

et al. [257] use LRP to capture the relative importance of the attention heads within each

Transformer layer (shown as PartialLRP in Figure 6). However, this approach is limited by

only providing partial information on each self-attention head’s relevance; no relevance

score is propagated back to the input. To address this problem, Chefer et al. [54] provide

a comprehensive treatment of the information propagation within all components of the

Transformer model, which back-propagates the information through all layers from the

output back to the input. This method further integrates gradients from the attention

weights, shown as TransAtt in Figure 6. However, TransAtt relies on the specific LRP rules

that is not applicable for other attention modules, e.g., co-attention. Thus it can not provide

explanations for all transformer architectures [53].

As such, the existing Transformer explanation techniques are not completely satisfactory

due to three major issues. First, most attention-based methods disregard the magnitudes

of the features. The summation operation (Eq. 2.2 shown in Figure 5) demonstrates both

attention weights (the green circles) and the feature (the blue circles) contribute to the

weighted outputs (the red circles). In other words, since the self-attention mechanism

involves the computation of queries, keys, and values, reducing it only to the derived

attention weights (inner products of queries and keys) is not ideal. Second, besides the
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self-attention mechanism, skip connection as another major component in Transformer is

not even considered in current techniques. The latter enables the delivery and integration of

information by adding an identity mapping from inputs to outputs, trying to solve the model

optimization problem from the perspective of information transfer [149]. Moreover, Lu et

al. [159] find that a significant portion of information flow in BERT goes through the skip

connection instead of the attention heads (i.e., three times more often than attention on

average). Thus, attention alone, without considering the skip connection, is not sufficient

to characterize the inner working mechanism of Transformers. Third, the individual feature

attribution-based approaches [54, 257, 260, 25] cannot capture the pairwise interactions of

feature since gradients or relevance scores are calculated independently for each individual

feature. For example, the gradients directly go through the Transformer layers from the

output to the specific input (the token ‘like’), shown in Figure 5.

We propose Attentive Class Activation Tokens (AttCAT) to generate token-level expla-

nations leveraging features, their gradients, and their self-attention weights. Inspired

by GradCAM [229], which uses gradient information flowing into the last convolutional

layer of the Convolutional Neural Network (CNN) to understand the importance of each

neuron for the decision of interest, our approach quantifies the impact of each token to

the class-specific output via its gradient information. We further leverage the self-attention

weights to capture the global contextual information of each token since it determines the

relative importance of a single token concerning all other tokens in the input sequence. By

disentangling the information flow across the Transformer layers for a specific token into

the information from itself via a skip connection and the interaction information among

all the tokens via a self-attention mechanism, we integrate the impact scores, which are
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Figure 6: A summary of the existing explanation methods and our methods: CAT and
AttCAT. The Transformer consists of several layers denoted as Layer (1), · · · , (l), · · · , (L).
∇α and ∇h represent the gradients of attention weights α and outputs h, respectively. R is
calculated based on layer-wise relevance propagation (LRP). E denotes the explanation
method. EH means averaging among multi-head attentions in each layer.

generated using AttCAT, from multiple layers to give the final explanation.

A summary of the baseline methods and our AttCAT method is shown in Figure 6,

demonstrating their main similarities and differences. The RawAtt and Rollout [4] methods

simply use the attention weights (α). The Grads method leverages the gradients of attention

weights (∇αL) from the last Transformer layer, while the AttGrads method [30] integrates

the attention weights (α) and their gradients (∇α) from all Transformer layers. The

PartialLRP method [257] applies LRP only on the last Transformer layer (RL). Differently,

the TransAtt method [53] integrates the relevance scores (R) from LRP and the gradients of

attention weights (∇α). We use CAT, a new gradient-based attribution method leveraging

the features (h) and their gradients (∇h), as our in-house baseline method. We further

integrate attention weights (α) with CAT as the proposed AttCAT method.
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2.2 Preliminary

2.2.1 Self-Attention Mechanism

The encoders in Transformer model [255] typically stack L identical layers. Each

contains two sub-layers: (a) a multi-head self-attention module and (b) a feed-forward

network module, coupled with layer normalization and skip connection. As illustrated

in Figure 5, each encoder computes the output h(l)
i ∈ Rd of the i-th token combining the

previous encoder’s corresponding output h(l−1)
i from the skip connection and a sequence

output h(l−1) = {h(l−1)
1 , · · · ,h(l−1)

i , · · · ,h(l−1)
n } ⊆ Rd through self-attention mechanism:

αl
i,j := softmax

(
Q(h

(l−1)
i )K(h

(l−1)
j )T

√
d

)
∈ R, (2.1)

hl
i = WO

(
n∑

j=1

αi,jV (hj
(l−1)) + h

(l−1)
i

)
, (2.2)

where αl
i,j is the attention weight assigned to the j-th token for computing h

(l)
i . d denotes

the dimension of the vectors. Here, Q(·), K(·), and V (·) are the query, key, and value

transformations:

Q(h) := WQh, K(h) := WKh, V (h) := WV h, (WQ,WK ,WV ) ∈ Rd×d, (2.3)

respectively. We drop the bias parameters in these equations for simplicity. For multi-head

attentions, we concatenate the output from each head.
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2.2.2 Class Activation Map

GradCAM [229] is one the most successful CAM-based methods using the gradient

information flowing into the last convolutional layer of CNN to understand the importance

of each neuron for the decision of interest. In order to obtain the class discriminative

localization map for the explanation, Grad-CAM first computes the gradient of the score for

class c, i.e., yc before the softmax, concerning feature maps Ak of a convolutional layer as

∂yc

∂Ak . Then, these flowing back gradients are global-average-pooled to obtain the neuron

importance weight wc
k:

wc
k = E

(
∂yc

∂Ak

)
, (2.4)

where E denotes the global-average-pooling. The weight wc
k reflects a partial linearization

of the CNN downstream from A and captures the importance of feature map k for a target

class c. Then a weighted combination of forward activation maps is obtained by:

GradCAMc = ReLU

(∑
k

wc
kA

k

)
, (2.5)

where ReLU() is applied to filter out the negative values since we are only interested in the

features that positively influence the class of interest.

2.3 Problem Formulation

The objective of a token-level explanation method for Transformer is to generate a

separate score for each input token in order to answer the question: Given an input text and

a trained Transformer model, which tokens mostly influence the model’s output? There is no

standard definition of influence in literature [175]. Some works use the term ‘importance’,
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whereas others use the term ‘relevance’ depending on the explanation methods being used.

Here we note that the token influence should reflect not only the magnitude of impact but

also its directionality. As such, we define a new concept, Impact Score, to measure both

Magnitude of Impact and Directionality. The former addresses the question “Which input

tokens contribute mostly to the output?”. And the latter addresses the question “Given an

input token, have positive or negative contributions been made to the output?” Formally,

we define the Impact Score generated by our AttCAT method as follows:

Definition 1 (Impact Score) Given a pre-trained Transformer T (·), an input token x, and

our explanation method EAttCAT(·). Impact Score is define as:

Impact Score(EAttCAT(T (x))) =


|EAttCAT(T (x))|, Magnitude of Impact,

Sign(EAttCAT(T (x))), Directionality.

(2.6)

Remark 1 (Magnitude of Impact) The magnitude of impact indicates how much contri-

bution has been made by each token. A sort function can be applied to the array of scores

for the input tokens to retrieve the most impactful tokens on the output.

Remark 2 (Directionality) The sign reveals whether each token makes a positive or

negative impact on the output.

2.4 Attentive Class Activation Tokens

2.4.1 Disentangling Information Flows in Transformer

To interpret the inner working mechanism of Transformers, it is essential to understand

how the information of each input token flows through each intermediate layer and
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finally reaches the output. Some previous works [4, 30] use heuristics to treat high

attention weights and/or their gradients as indicators of important information flows across

layers. Others [54, 257] apply LRP aiming to dissect the information flows via layer-

wise back-propagation. However, these approaches either rely on the simple-but-unreliable

assumption of linear combination of the intermediate layers or ignore the major components

of Transformer, i.e., the magnitudes of the features and the skip connection.

From Figure 5, we observe that the output sequence of the Transformer model has a

one-to-one correspondence to its input sequence. The skip connection is a shortcut that

bridges the input and output of the self-attention operation. We note that the Transformer

encoder intuitively is an operator that adds the representation of token interactions (via self-

attention mechanism) onto the original representation of the token (via skip connection).

Therefore, from a perspective of information flow, we can specify the i-th token’s information

at the (l)-th layer as:

Information(xl
i) = Information(xl−1

i ) + Interaction(xl−1
i ,xl−1

n/i ), (2.7)

where Information(xl−1
i ) represents the information contained in the i-th token at the (l-

1)-th layer, and Interaction(xl−1
i ,xl−1

n/i ) reflects the summation of all pairwise interaction

between the i-th token and all other tokens (n/i).

This observation motivates us to interpret the inner working mechanism of Transform-

ers via disentangling the information flow Transformer. Thus, considering Eq. 2.7 as a

recurrence relation, the final representation of the i-th token then consists of the original

information (the input) plus token interactions between the i-th token and all other tokens
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at different layers. Since the CNN’s last convolutional layer also encodes both high-level se-

mantics and detailed spatial information, corresponding to the original information and the

interactions herein, the way GradCAM used for explaining a CNN model’s output inspired

us to design Attentive Class Activation Tokens (AttCAT) to understand the impact of each

token on a Transformer model’s output.

2.4.2 Class Activation Tokens

For a pre-trained Transformer, we can always find its output hl at l-th layer. Assume

hl has n columns, each column corresponds to an input token (including the paddings,

i.e., [CLS] and [SEP]). We write its columns separately as hl
1, · · · ,hl

i, · · · ,hl
n. As hL

i is the

output of i-th token from the last Transformer layer L, to interpret the impact of i-th token

to the final output yc for class c, it would be straightforward if we have a linear relationship

between yc and hL
i as follows:

yc =
n∑
i

wc
i · hL

i , (2.8)

where wc
i is the linear coefficient vector for hL

i . Inspired by GradCAM [229], we obtain the

token important weights as:

wc
i = ∇hL

i =
∂yc

∂hL
i

, (2.9)

where wc
i illustrates a partial linearization from hL

i and captures the importance of i-th

token to a target class c. Class Activation Tokens (CAT) is then obtained through a weighted

combination:

CATL
i = ∇hL

i ⊙ hL
i , (2.10)



41

where ⊙ is the Hadamard product. CATL
i denotes the impact score of the i-th token at L-th

layer towards class c. Note that we do not apply ReLU() to filter out the negative scores

here since we also care about the directionality of the impact score.

2.4.3 Attentive CAT

While CAT explains the model’s output according to the attribution of each individual

token’s encoder output (Eq. 2.8), it does not consider the interaction among tokens,

which is revealed via the self-attention mechanism. The self-attention mechanism [28]

assigns a pairwise similarity score between every two tokens as the attention weight,

encoding the important interaction information of these tokens. Therefore, we integrate

self-attention weights with CAT to further incorporate the token interaction information

for better quantifying the impact of each token on the Transformer model’s output. Our

Attentive CAT (AttCAT) at L-th layer for i-th token is then formulated as:

AttCATL
i = EH(α

L
i · CATL

i ), (2.11)

where αL
i denotes the attention weights of the i-th token at L-th layer. EH(·) means

averaging over multiple heads.

Recall that Eq. 2.7 represents a recurrence relation, we can always find the output of

l-th layer and assign it as yli. We can use Eq. 2.9, 2.10, and 2.11 to formulate AttCATl
i,

denoting the impact score for i-th token at l-th layer.

Finally, different from the Rollout and TransAtt methods that apply the rollout operation,

we sum AttCATl
i over all Transformer layers as the final impact score of i-th token as



42

follows:

AttCATi =
L∑

j=1

AttCATj
i . (2.12)

We empirically demonstrate that the summation is a more effective way than Rollout in

Figure 9.

2.5 Experiments

2.5.1 Desirable Properties of an Explanation Technique

We first introduce two desirable properties of an explanation method: faithfulness

and confidence, along with metrics to systematically evaluate the performance of various

explanation techniques.

Faithfulness quantifies the fidelity of an explanation technique by measuring if the

tokens identified indeed impact the output. We adopt two metrics from prior work to

evaluate the faithfulness of word-level explanations: the area over the perturbation curve

(AOPC) [183, 56] and the Log-odds scores [236, 56]. These two metrics measure local

fidelity by deleting or masking the top k% scored words and comparing the probability

change on the predicted label.

Confidence A token can receive several saliency scores, indicating its contribution to

the prediction of each class. The tokens with higher impact scores of the predicted class

c should also have lower impact scores for the remaining classes. In other words, the

explanation techniques should be highly confident in recognizing the most impact tokens

of the desired class (usually the predicted class). On the other hand, these tokens should

have the most negligible impact on other classes. We use Kendall-τ correlation, the statistic

measuring the strength of association between the ranked scores of different classes, to
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evaluate the confidence of an explanation method.

2.5.2 Experiment Settings

Transformer models: BERT [70] is one of the most representative Transformer models

with impressive performance across a variety of NLP tasks, e.g., sentiment analysis and

question answering. We use the BERTbase model and some variants (i.e., DistillBERT

[226] and RoBERTa [155]) in our experiments. Our method can be generally applied to

other Transformer architectures with minor modifications. The pre-trained models from

Huggingface1 are used for validating our explanation method and comparing it to others.

Datasets: We evaluate the performance using the following exemplar tasks: sentiment

analysis on SST2 [241] , Amazon Polarity, Yelp Polarity [303], and IMDB [162] data sets;

natural language inference on MNLI [274] data set; paraphrase detection on QQP [60]

data set; and question answering on SQuADv1 [212] and SQuADv2 [211] data sets.

Baseline methods: Several baseline explanation methods for Transformer have been

compared through our experiments, including the attention-based methods (i.e., RawAtt

and Rollout [4]), the attention gradient-based methods (i.e., Grads and AttGrads [30]), the

LRP-based methods (i.e., PartialLRP [257] and TransAtt [54]). CAT without incorporating

attention weights is an ablation version of AttCAT. Figure 6 summarizes and compares these

methods with formulations.
1https://huggingface.co/

https://huggingface.co/
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2.5.3 Evaluation Metrics

AOPC: By deleting top k% words, AOPC calculates the average change of the prediction

probability on the predicted class over all test examples as follows:

AOPC(k) =
1

N

N∑
i=1

p(ŷ|xi)− p(ŷ|x̃k
i ), (2.13)

where N is the number of examples, ŷ is the predicted label, p(ŷ|·) is the probability on

the predicted class, and x̃k
i is constructed by removing the k% top-scored words from xi.

To avoid choosing an arbitrary k, we remove 0, 10, 20, · · · , 100% of the tokens in order of

decreasing saliency, thus arriving at x̃0
i , x̃

10
i , · · · , x̃100

i . Higher values of AOPC are better,

which means the deleted words are more impactful on the model’s output.

LOdds: Log-odds score is calculated by averaging the difference of negative logarithmic

probabilities on the predicted class over all test examples before and after masking k%

top-scored words with zero paddings,

LOdds(k) =
1

N

N∑
i=1

log
p(ŷ|x̃k

i )

p(ŷ|xi)
. (2.14)

The notations are the same as in Eq. 2.13 with the only difference that x̃k
i is constructed

by replacing the top k% word with the special token [PAD] in xi. Lower LOdds scores are

better.

Kendal correlation: We use the Kendal-τ to evaluate confidence of an explanation
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method, formally:

Kendal correlation =
1

N

N∑
i=1

Kendall-τ(S(xi)c, S(xi)C/c), (2.15)

where S(xi) denotes an array of the token index in order of the decreasing saliency (or

attribution, or relevance, or impact) scores for a test example. A lower Kendal correlation

demonstrates the explanation method is more confident in generating the saliency scores

for predicting the class c.

Precision@K: Inspired by the original Precision@K used in recommender system [187],

we design a novel Precision@K to evaluate the explanation performance on SQuAD data

sets. For each test example, we count the number of tokens in the answer that appear in

the K top-scored tokens as Precision@K. Therefore, higher Precision@K scores are better.

2.6 Results and Discussions

2.6.1 Quantitative Evaluations

The quantitative evaluations in this Section demonstrate our AttCAT method outperforms

the baseline methods on the vast majority of different data sets and tasks. Table 3 depicts

the results of various explanation methods and data sets. We report the average AOPC and

LOdds scores over k values. Due to computation costs, we experiment on a subset with

2,000 randomly selected samples for the Amazon, Yelp, and IMDB data sets. Entire test sets

are used for other data sets. AttCAT achieves the highest AOPC and lowest LOdds scores

in most settings, demonstrating that the most impactful tokens for model prediction have

been deleted or replaced. Among all the compared methods, the attention-based methods

(i.e., RawAtt and Rollout) perform worst since attention weights alone without considering
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Figure 7: AOPC and LOdds scores of different methods in explaining BERT against the
corruption rate k on Amazon data set. Higher AOPC and lower LOdds scores are better.
The x-axis demonstrates removing or masking the k% of the tokens in order of decreasing
saliency.

the magnitudes of feature values are not adequate to analyze the inner working mechanism

of Transformers. Remarkably, AttCAT also outperforms TransAtt, a recent work representing

a strong baseline method. The performance of CAT, shown here as an ablation study, drops

markedly, corroborating the effectiveness of using self-attention weights in AttCAT.

We also report the AOPC and LOdds scores of different methods in explaining BERT

by deleting or masking bottom k% words on different data sets. Our AttCAT achieves the

lowest AOPC and highest LOdds, demonstrating that AttCAT efficiently captures the most

impactful tokens for model predictions.

Figure 7 illustrates how the evaluation metrics, namely AOPC and LOdds, change over

the varying corruption rates (via removing or masking the k% top-scored words). Our

AttCAT method achieves the highest AOPC and the lowest LOdds scores within a corruption

rate k of 50% or less, further demonstrating that AttCAT has detected the most impactful

words for model predictions.

Table 4 shows the Kendal-τ based confidence score of the different explanation tech-
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Table 3: AOPC and LOdds scores of different methods in explaining BERT on different data
sets. Higher AOPC and lower LOdds scores are better. Best results are in bold face.

Method SST2 QQP MNLI Amazon Yelp IMDB
AOPC↑ LOdds↓ AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds

RawAtt 0.331 -0.885 0.143 0.149 0.138 0.235 0.384 -1.729 0.394 -2.017 0.298 -1.245
Rollout 0.286 -0.641 0.139 0.262 0.151 0.321 0.324 -1.303 0.277 -1.055 0.331 -1.323
Grads 0.335 -0.252 0.141 0.184 0.156 0.139 0.316 -1.820 0.414 -1.994 0.304 -1.227

AttGrads 0.351 -0.603 0.143 0.113 0.159 0.114 0.346 -1.941 0.439 -2.054 0.310 -1.267
PartialLRP 0.341 -0.922 0.142 0.137 0.138 0.231 0.418 -2.019 0.424 -2.199 0.312 -1.321
TransAtt 0.354 -1.038 0.145 0.114 0.130 0.214 0.415 -1.889 0.434 -2.508 0.421 -2.137

CAT 0.352 -1.115 0.134 0.121 0.157 0.121 0.409 -2.157 0.421 -2.587 0.406 -3.052
AttCAT 0.371 -1.319 0.139 0.073 0.164 0.008 0.457 -2.332 0.473 -3.169 0.528 -3.671

Table 4: Kendal-τ correlation of different explanation methods in explaining BERT on
varying data sets. Lower scores are better. Only class-specific methods are selected. Best
results are in bold face.

Method STT2 QQP MNLI Amazon Yelp IMDB
Grads 0.150 0.236 0.169 0.146 0.174 0.098

AttGrads 0.116 0.198 0.156 0.148 0.132 0.064
PartialLRP 0.955 0.949 0.935 0.965 0.952 0.858
TransAtt 0.336 0.222 0.339 0.152 0.121 0.043

CAT 0.101 0.373 0.339 0.095 0.107 0.056
AttCAT 0.018 0.349 0.017 0.015 0.008 0.023

niques for BERT tested using various data sets. We do not report the confidence scores

of the attention-based methods since they are class agnostic. AttCAT achieves the best

performance on most data sets; different classes observe distinctively sorted tokens, leading

to much lower Kendal correlations. In other words, our AttCAT is highly confident in

recognizing the most impactful tokens for predicting the class of interest.

We show the Precision@K scores for the SQuAD data sets in Figure 8. Here k is set to 20.

Our results clearly demonstrate that AttCAT is superior to other methods and generalizes

well to various BERT architectures on SQuAD data sets. The higher score means that

AttCAT can capture more impactful answer tokens in the TOP-20 sorted tokens, proving its

capability to generate more faithful explanations.
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Figure 8: Precision@20 scores of the selected explanation methods for different Transformer
models on SQuAD data sets. Higher scores are better. The max scores of SQuADv1 and
SQuADv2 are 3.72 and 3.84, respectively.

2.6.2 Qualitative Visualizations

Lastly, we show a heatmap of the normalized impact scores generated by AttCAT in

Figure 9. The first 12 rows (L0-L11) show the impact scores of each token from different

BERT layers. The darker shaded token represents a higher score, as shown in the legend.

The signs of scores indicate their directionalities. This heatmap also justifies the effectiveness

of the summation operation we used in Eq. 2.12. As shown in the figure, the impact scores

become uniform and less impactful as the layer goes deeper, which is consistent with the

observation from [4] where the authors argue that the embeddings are more contextualized

and tend to carry similar information in the deeper layers. Thus, the rollout operation used

in [4, 54] will attenuate the impact scores at shallower layers (i.e., L0-L9) since they are
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Figure 9: Heatmap of the normalized impact scores from different BERT layers. Rollout
and Sum denote the rollout and summation operations (ours), respectively. Best viewed in
color.

multiplied by scores at the deeper layers (i.e., L10-L11). As shown in the row of ‘Rollout’ in

the figure, the rollout operation only gives minimal impact scores of the tokens, indicating

essentially no information has been captured for the explanation. While the summation

operation (ours), shown as the row of ‘Sum’, generates a faithful explanation incorporating

the impact scores from each layer. In term of Impact Score, the token ‘not’ with the highest

positive impact score (0.72) contributes mostly to the negative sentiment of this sentence,

whereas the token ‘like’ with the highest negative impact score (-0.37) contributes inversely.



50

(a) A visualization of the impact scores generated by AttCAT on a showcase example in SQuAD.

（a）AttCAT
（b）TransAtt
（c）RawAtt
（d）Rollout

(b) Visualizations of the impact scores generated by the selected methods on a showcase example in
SST2.

Figure 10: Visualization examples. The green shade indicates an important positive impact
whereas the read shade means otherwise. Darker colors represent higher impact scores.
Best viewed in color.

The ground truth answer of the question answering example shown in Figure 10a is

“denver brconcos". AttCAT successfully captures these two tokens with the darkest green

shades, corresponding to highest impact scores. The example from SST2 shown in Figure

10b has a negative sentiment. Both AttCAT and TransAtt capture the most impactful tokens,

such as ‘boring’, ‘didn’, and ‘t’, which contribute mostly to the negative sentiment prediction.

Besides the tokens explaining the negative sentiment, our AttCAT method also identified

some other tokens that contribute inversely to the negative sentiment, e.g., ‘like’ and ‘really’

(shown in dark shade of red), whereas TransAtt is not capable of differentiating positive

and negative contributions. RawAtt gives more attention on some irrelevant tokens, i.e.,

‘overall’, ‘but’, and the punctuations. Rollout only generates some uniformly distributed

important scores for the tokens.
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2.7 Conclusion

This work addresses the major issues in generating faithful and confident explanations

for Transformers via a novel attentive class activation tokens approach. AttCAT leverages

the features, their gradients, and corresponding attention weights to define the so-called

impact scores, which quantify the impact of inputs on the model’s outputs. The impact score

can give both the magnitude and directionality of the input tokens’ impact. We conduct

extensive experiments on different Transformer models and data sets and demonstrate

that our AttCAT achieves the best performance among strong baseline methods using

quantitative metrics and qualitative visualizations.

Even though our current AttCAT approach is mainly designed for BERT architectures on

NLP tasks, it can be naturally extended to Vision Transformer architectures on computer

vision tasks as future work. Since there are various versions of Transformer architectures,

e.g., ViT [74] and Swin Transformer [157], which are much different from Transformers

used on NLP tasks, opens up new avenues to extend our AttCAT to explain these models’

predictions.
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CHAPTER 3 COUNTERFACTUAL INTERPOLATION AUGMENTATION
(CIA): A UNIFIED APPROACH TO ENHANCE FAIRNESS AND

EXPLAINABILITY OF DNN

3.1 Introduction

Deep neural network (DNN) trained with biased data is known to learn and exploit

the spurious correlation between the target variable and the sensitive attribute (e.g.,

color, gender, and race) as a shortcut for prediction [116, 86]. However, the spurious

correlation may only reflect dataset-specific biases or sampling artifacts rather than the

causal mechanism between the intended feature and target variable. As a result, the DNN’s

output may be biased against the protected groups defined by the sensitive attribute. For

example, a facial recognition model performs poorly for female with darker skin compared

to other gender/race groups [42]. Developing bias mitigation techniques to alleviate the

adverse effect has attracted increasing attention in recent years.

Extensive approaches have been developed to mitigate bias in DNN’s prediction. Many

methods attempt to remove sensitive information from the learned features during the

training process [163, 116, 145]. However, the adversarial training and disentangled

representation learning approaches are limited because they potentially remove some useful

information related to the sensitive attribute, thus compromising the model performance

on the target task. [117] aim to debias and increase the quality of the training set via data

augmentation. Despite its initial success, they augment data through linearly interpolating

the latent features from the discriminative models, limiting their capability to generate a

set of legitimate and manifold data augmentations. Clearly, generative models that learn

the distribution of features provide a promising solution.
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Figure 11: An illustrative example. (a) The target variable (shape) is spuriously correlated
with the sensitive attribute (color) in the biased training set. A biased classifier undesirably
learns and leverages the spurious correlations for prediction. (b) Our CIA generates bias-
tailored counterfactual interpolation augmentation to mitigate bias in the training set and
to enhance fair explanation. (c) CIA enables training a fair classifier to learn discriminative
features for shape classification. (d) In the first row, CIA generates a meaningful explanation
for classifying the target (shape). In the second row, a baseline interpolation generates
explanation of the target (shape) confounded by the sensitive attribute (color). Best viewed
in color.

While many existing approaches ensure fairness, explainability arises as another salient

challenge. Besides selecting appropriate metrics (e.g., demographic parity, equality-of-odds)

for fairness evaluation, researchers attempt to apply model explanation techniques to help

understand whether a DNN model makes fair decisions [202, 187, 251]. Among others,

feature attribution methods (e.g., IG [247]) calculating the attribution of each input feature

as its importance have gained great success. Nevertheless, the computing process may be

misled by the sensitive attribute, resulting in incorrect explanations as shown in Figure

11(d), due to the arbitrary choices of the baseline and integral path.

To address the above problems, we design a bias-tailored counterfactual interpolation

augmentation (CIA) approach to 1) mitigate bias in the training set, and 2) develop fair

and explainable DNN models using the counterfactual interpolations generated from CIA.

Our unified approach is illustrated in Figure 11. Here we mitigate bias in the training set



54

through the lens of counterfactual fairness [128, 196]. The counterfactual causal inference

is modeled using a conditional variational auto-encoder (CVAE) [242], which generates the

counterfactual interpolations by interpolating the sensitive attribute along a constructed

path simulating the distribution transitions between the sensitive groups. We then inject

the bias-tailored counterfactual interpolations into the biased training set to intervene the

spurious causal effect. Therefore, DNN models trained with CIA tend to learn the features

that are truly causal to the target variables, resulting in fair outputs.

Similar to the attribution methods, the counterfactual explanation can give powerful

insights into what is important to the underlying decision process leveraging the counter-

factual examples, which are in contrast with the original input by making some artificial

modifications on the features of interest [128, 259]. Here we develop a new DNN model

explanation method that integrates gradients along the interpolated path simulating the

distribution transitions from the counterfactual example to the input. Since the gradient

integration focuses on the intended attributes and does not get distracted by the sensitive

attribute, our method can generate more meaningful explanations by dissolving the negative

impacts from the sensitive attribute.

3.2 Counterfactual Interpolation Augmentation

3.2.1 Notations

Let X = {xi, yi, si}, i ∈ 1, ..., N be the training set, where xi is the input, yi denotes the

target label, and si represents the sensitive attribute. For ease of notation, we consider

binary sensitive attributes in the following sections. z is the latent space feature. x′ and s′

denote the counterfactual samples of x and s, respectively. We use capital letters to denote
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the random variables.

3.2.2 Counterfactual Causal Inference

Counterfactual fairness [128] requires the same distribution of predictions for each

sample in the factual world where S = s and in counterfactual world where S = s′, for all

s′ ̸= s ∈ S. It refrains the sensitive attribute from being the cause of a change in the model

prediction.

Definition 1. (Counterfactual Fairness) [128] A classifier Ŷ is counterfactually fair if under

any context X = x and S = s,

p(ŶS←s = y|X = x, S = s)

=p(ŶS←s′ = y|X = x, S = s′),

(3.1)

for all y and for any value s′ attainable by S.

However, the counterfactual fairness only requires the predictions to be the same across

factual-counterfactual pairs, regardless of whether those pairs share the same value of

the target y. Following [196], we further require the model to be counterfactually fair,

conditioning on the factual target y, formally:

p(ŶS←s = y|X = x, Y = y, S = s)

=p(ŶS←s′ = y|X = x, Y = y, S = s′).

(3.2)

We seek to address the training data bias problem through the lens of causal inference

motivated by Definition 1 and Eq. 3.2. However, it is hard to identify the causal mechanisms

from limited observational data that may be sampled from a single biased training distribu-
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Figure 12: Structure of the hypothesized causal graphs. (a) Unobserved latent variables Z
and sensitive attribute S are two confounders that jointly generate the observed data X and
the outcome Y . (b) Add another confounder S ′ to generate the counterfactual example X ′.

tion. It would be a natural decision to help identify the counterfactual causal mechanisms

with additional hand-designed counterfactual examples.

Figure 12(a) illustrates the causal graph, modeling the generative process of the original

biased dataset X , in which z is drawn from an isotropic Gaussian prior: z ∼ p(Z) = N (0, I),

s is drawn form a multinomial distribution with marginals π: s ∼ p(S) = Categorical(S|π),

and x and y are drawn independently given s and z: x, y = p(X|Z, S)p(Y |Z, S). The data

bias problem is caused by the distribution of sensitive attribute p(S), e.g., s is randomly

drawn from a multinomial distribution. We model the counterfactual causal inference

to generate counterfactual interpolation augmentations illustrated in Figure 12(b). A

counterfactual generative process is x′, y = p(X ′|Z, S ′)p(Y |Z, S ′), and here S ′ is a new

confounding variable in contrast with S.

3.2.3 Generating Counterfactual Interpolations

It is generally impossible to infer the causal structure of the underlying data generating

process directly from the observable properties. Therefore, we employ a generative model

to capture the causal structure in the presence of an unobserved confounder with observable
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Figure 13: CIA employs a pre-trained CVAE to generate a set of counterfactual interpolations
(x̂1, x̂2, · · · , x̂n) of x conditioned on interpolated sensitive attributes s̃ and y, where s′

contrasts with s.

proxies [164].

We first pre-train a generative model (e.g., CVAE) in which the encoder and decoder

inputs are conditioned on the sensitive attribute and target variable. Concretely, the encoder

learns qϕ(z|x, y, s), which is equivalent to learning latent feature z of data x with condition

s and y. The decoder learns pθ(x|z, y, s) decoding the latent feature z with condition s

and y to input space. The generative model is trained to minimize the following objective

function:

LCVAE(θ, ϕ) =− Eqϕ(z|x,y,s) log pθ(x|z, y, s)

+ KL(qϕ(z|x, y, s)||pθ(z)).
(3.3)

The first term denotes a reconstruction loss encouraging the encoder to map the observed

data (x, y, s) into latent feature z and the decoder to reconstruct x from (z, y, s). The

second term indicates a regularization making the distribution qϕ(z|x, y, s) similar to a prior
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Gaussian distribution p(z) by Kullback–Leibler (KL) divergence

CVAE can generate non-existent manipulated samples as interpolations for real samples

along any arbitrary axis. We design an interpolated path moving linearly along the sensitive

attribute s as:

s̃ = (1− δ) · s+ δ · s′, δ ∈ [0, 1], (3.4)

and inject s̃ into the decoder of the pre-trained CVAE as shown in Figure 13. We generate

a set of counterfactual interpolations (x̂1, x̂2, · · · , x̂n) transiting from the factual example

x to its counterfactual example x′ along the interpolated path defined in Eq. 3.4. The

variation of δ determines the number of generated interpolations. This interpolated process

is applicable regardless of a single sensitive attribute (e.g., color in BiasedMNIST dataset)

or multiple sensitive attributes (e.g., gender and age in CelebA dataset).

3.3 Training and Interpreting Fair DNN

3.3.1 Training Fair DNN with CIA

By adding the generated counterfactual interpolations XCIA, we obtain our augmented

training dataset XAUG = X ∪XCIA. A reasonable amount of counterfactual interpolations in

XCIA alleviate the dataset bias caused by the sensitive attribute in X , thus preventing the

model from learning biased representation. Finally, we train our debiased model Fdebias on

XAUG with the cross-entropy objective:

Lclass = Ex∼XAUG

[
−
∑
c

yc logFdebias(x)

]
, (3.5)

where c is the index of the classes.
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3.3.2 Counterfactual Gradients Integration

IG sums gradients over gradual modifications from a baseline to the original input,

essentially distributing the total change in model output across gradual input changes. IG’s

performance heavily relies on the choice of baseline. An arbitrary choice could negatively

impact the explanatory power and lead to meaningless explanations. The explanation

generated from IG using a black image baseline without the sensitive attribution cannot

correctly reflect feature importance in the debiasing learning scenario as illustrated in

Figure 11(d).

We propose a gradient-based feature attribution technique, Counterfactual Gradients

Integration (CGI), which leverages the counterfactual interpolations generated from CIA

to artificially induce a procedure on how the model attention moves across the gradual

changes on the sensitive attribute of the input while computing the final prediction score.

Thus, CGI can generate explanations regardless of bias while querying a fair DNN model

for gradients.

3.3.3 Path Integral of CGI

IG pre-defines a straight line as the path integral from the baseline x′ to the original

input x as γ(α) = x′ + α(x − x′), where α ∈ [0, 1], i.e., γ(0) = x′ and γ(1) = x. The

baseline x′ represents the absence of features. In CGI, we design the path integral as the

interpolated path, transiting from the counterfactual sample x′ to the input x for generating

counterfactual interpolations in CIA, formally: γ(δ) = g(x, (1 − δ) · s + δ · s′), where g(·)

denotes the pre-trained generative model and δ ∈ [0, 1]. We formulate CGIi(x) along the
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i-th dimension for an input x and its counterfactual example x′ as:

CGIi(x) = (xi − x′i)

∫ 1

δ=0

∂F (γ(δ))

∂γi(δ)

∂γi(δ)

∂δ
dδ. (3.6)

CGI is obtained by accumulating the gradients along the integration path γ(δ) by varying

the δ parameter. The model will encounter interpolations on the sensitive attribute from s′

to s during the CGI process.

3.4 Experiments and Results

3.4.1 Datasets

BiasedMNIST. Following [19], we modify MNIST by introducing color (i.e., red and

green) as the sensitive attribute correlating strongly (but spuriously) with the target labels

in the training set. A fairness-indifferent DNN model can easily achieve high accuracy by

only learning the superficial properties (colors) instead of the inherent properties (shapes)

for digit recognition. However, such a biased model can fail at inference time when the

spurious correlation between the sensitive attribute and the target shifts or vanishes, for

example, randomly coloring the digits.

CelebA. The CelebA is a multi-attribute dataset for face recognition with 40 binary

attribute annotations for each image. Following [181], we select HeavyMakeup and

HairColor as target attributes (y) and Gender as the sensitive attribute (s). There is a

significant spurious correlation between the target and the sensitive attributes (i.e., most

women have blond hair or wear heavy makeup in this dataset). [181] compiled two test

datasets: unbiased, by selecting the same number of images for every possible value of
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the pair (y, s), and bias-conflict, by removing all the samples where y and s have the same

values from the unbiased set.

3.4.2 Implementation Details

Architecture details. We employ the LeNet-5 and a pre-trained VGG-16 as the feature

extractor along with two fully connected layers as the classification models for BiasedMNIST

and CelebA, respectively. The encoder and decoder in CVAE for BiasedMNIST are multi-

layered perceptrons consisting of three hidden layers where the latent feature dimension is

set to be 2. For CelebA, the encoder of CVAE has 4 × Conv2D layers with a 3×3 kernel. The

decoder consists 4 × Conv2DTranspose layers with a 3×3 kernel. A batch normalization

layer and Leaky ReLu activation function are added after the Conv2D and Conv2DTranspose

layers. The latent feature dimension is set to be 128. We add a fourth channel to each

image to encode the sensitive attributes.

Training details. We use Adam optimizer throughout all the experiments in the paper.

All models are trained with a learning rate of 0.001 and a batch size of 64. We train the

classification models for 5 epochs using the cross-entropy loss. We train CVAEs for 50 and

20 epochs for BiasedMNIST and CelebA, respectively, with binary cross-entropy loss as the

reconstruction objective. We generate counterfactual interpolations for the whole training

set using the pre-trained CVAE following our CIA approach for BiasedMNIST. Since ClebeA

dataset is much larger, with more than 160,000 images in the training set, we randomly

select 10,000 samples from the training set and generate their counterfactual interpolations.
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3.4.3 Baseline Methods

LAFTR. [163] explore adversarial representation learning ensuring group fairness (e.g.,

demographic parity, equalized odds, and equal opportunity) to different adversarial objec-

tives.

PriorTraining. [265] propose a general framework for learning interpretable fair repre-

sentations by introducing an interpretable “prior knowledge” during the representation

learning process. They add an adversarial loss similar to LAFTR as fairness constraints.

Another prior loss is used to ensure the interpretable feature learning.

Group DRO. [224] aim to minimize “worst-case” training loss over a set of pre-defined

groups. The authors expect that models that learn the spurious correlation between sensitive

attributes and target variables would perform poorly on groups for which the correlation

does not hold. By adding a strong regularization on the worst-case groups, Group DRO can

prevent the models from learning pre-specified spurious correlations.

LfL. [224] propose a failure-based debiasing scheme by training a pair of neural networks

simultaneously. The first network is trained to be biased by repeatedly amplifying its

“prejudice”. They debias the training of the second network by focusing on samples that go

against the prejudice of the first network.

3.4.4 BiasedMNIST Results

We compare our method with the vanilla models (Vanilla, plain training without any

debiasing procedure), LAFTR [163], and PriorTraining [265]. We quantitatively assess the

effectiveness of different methods via comparing classification performance on training
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Table 5: Fairness evaluation on BiasedMNIST. CIA-10, CIA-20 and CIA-30 denotes our
CIA method with 10, 20 and 30 generated counterfactual interpolations for each sample,
respectively. Best performing results are marked in bold.

Method Training Acc Test Acc
Vanilla 79.48 18.08
LAFTR 74.14 75.22
PriorTraining 74.62 75.46
CIA-10 79.64 78.16
CIA-20 79.95 78.23
CIA-30 79.97 78.69

Figure 14: Examples of attribution heatmaps obtained by IG, BlurIG, and CGI. CGI demon-
strates to generate higher quality attribution heatmaps with clearer digits shape, less noise,
and focuses more densely on the digits (i.e., more bright masks).

and test sets. The results are shown in Table 5. The vanilla model heavily relies on the

spurious correlation between color (sensitive attribute) and digit (target), so it fails to learn

the digit shape during training, resulting in a large accuracy drop on the test set (79.48 →

18.08). LAFTR and PriorTraining apply adversarial training to remove sensitive information

from the learned features, which may compromise the model performance on the main

classification task. Our CIA debiases the training set using counterfactual interpolations and

consequently achieves the highest training and test accuracies. The number of generated

counterfactual interpolations benefits the performance of CIA, i.e., CIA-30 achieves the best

performance.

We qualitatively compare the explanation performance of our CGI with two baselines,

IG and BlurIG [284], in Figure 14. IG applies a black image as the baseline for gradients



64

Table 6: Evaluation results on CelebA. Gender is the sensitive attribute. The results of
Group DRO and LfF are cited from [181]. We report the average accuracy over all (y, s)
pairs.

Target Acc.Type Vanilla Group DRO LfF CIA-10 CIA-20 CIA-30

HairColor Unbiased 69.14 85.43 84.24 84.95 85.12 85.60
Bias-conflict 50.26 83.40 81.24 83.16 83.69 84.17

HeavyMakeup Unbiased 61.45 64.88 66.20 67.86 68.04 68.39
Bias-conflict 31.56 50.24 45.48 48.07 49.26 50.16

integration whereas BlurIG defines the path integral by successively blurring the original

input.

3.4.5 CelebA Results

We compare our method with LfF [181] and Group DRO [224] with results shown

in Table 6. The vanilla model spuriously uses the sensitive attributes for target variable

prediction, leading to low accuracies, especially on the bias-conflict sets. Notably, there are

large accuracy gaps (i.e., unbiased dataset: 69.14 → 85.60 and 61.45 → 68.39; bias-conflict

dataset: 50.26 → 84.17 and 31.56 → 50.16) between the vanilla model and our model

demonstrating the effectiveness of CIA for bias mitigation. Our model outperforms Group

DRO and LfF on most evaluation data sets. We note that CIA is a pre-processing approach

that is both algorithm- and model-agnostic. As such, it is compatible with many other in-

processing and post-processing fairness algorithms. We mainly demonstrate the advantage

of only using CIA coupled with plain training in this work and leave the combination of CIA

with other algorithms as our future works.

Figure 15 shows a qualitative example demonstrating CGI is capable of generating

higher quality attribution map. Note that there is substantial noise in IG’s attribution

map due to the arbitrary choice of the baseline. Both CGI and BlurIG have captured the

meaningful facial features (e.g., eyes and lips) related to the target attribute HeavyMakeup.
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Figure 15: Examples of attribution maps obtained by IG, BlurIG, and CGI. The target
attribute is HeavyMakeup.

While CGI’s attribution map has higher density masks demonstrating a focus more densely

on these facial features.

3.4.6 Quantitative Performance

We use insertion score and deletion score [194] to quantitatively evaluate the inter-

pretation quality of different attribution methods. An attribution method should yield a

high insertion score while keeping a low deletion score. We select 1000 samples from

BiasedMNIST and 128 samples from CelebA (target variable: Heavymakeup) and report

the quantitative results in Table 7. Our CGI outperforms other attribution methods evident

by higher insertion and lower deletion scores.
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Table 7: Quantitative results using deletion score and insertion score.

Method BiasedMNIST CelebA
Deletion↓ Insertion↑ Deletion↓ Insertion↑

IG 0.2080 0.5591 0.1038 0.2514
BlurIG 0.2693 0.5014 0.0638 0.3016
CGI(ours) 0.1649 0.6253 0.0746 0.3264

Figure 16: An showcase example demonstrates CGI is capable of generating fair explanation.

3.5 Discussion

3.5.1 Fair Explanation

Although these explanation methods can generate attributions to interpret the model

predictions, it is still unclear whether the attributions are generated from the discriminative

features or the sensitive attribute since we do not have the ground truth attributions

available for evaluation [311]. We illustrate an example from BiasedMNIST in Figure 16

to examine whether these methods are making fair explanations. Both IG and CGI can

generate high-quality attribution maps with clear digit shape. While CGI’s attribution map

clearly shows that the attributions are captured from the digit shape rather than the color.

This is because our CGI applies the counterfactual interpolations for gradients integration,

which counteracts the effect of the sensitive attribute.

3.5.2 Investigating Saturation Effects

[172] split the area along the integral path as the saturated region where the model

outputs changes minimally, and unsaturated region where the model outputs changes
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Figure 17: Comparing saturation regions of IG and CGI. We randomly select 10 samples
from BiasedMNIST and report the model predictive probability (y-axis) along α and δ
(x-axis) integral path.

substantially. The gradients from the saturated region dominate the calculation of IG.

Nevertheless, the integrated gradients of the saturated region seem to be noisier and

substantially less faithful than the unsaturated region. Therefore, it is desirable to have a

larger unsaturated region to convey feature importance via gradients integration.

Here, we conduct experiment to investigate the saturation regions of IG and CGI. Figure

17 clearly shows that our CGI integrates gradients in a larger unsaturated region than

IG does, which contributes proportionately to the computed attribution leading to better

explanations as shown in Figure 14. This further demonstrates the effectiveness of our CGI

approach in the aspect of gradient saturation effect.

3.6 Conclusion

We propose CIA as a pre-processing method to improve DNN’s fairness via de-correlating

the target variable with the sensitive attribute in training set. CIA generates counterfactual
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interpolations from a generative model. We further develop a gradient-based feature

attribution method leveraging the counterfactual interpolations from CIA to generate

high quality and fair explanations. Our experimental results demonstrate the outstanding

performance of our approach via quantitative and qualitative evaluations using benchmark

datasets. In the future, we will investigate the problem of fair explanation generation with

implicit bias mitigation.
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CHAPTER 4 HIJACKING LARGE LANGUAGE MODELS VIA
ADVERSARIAL IN-CONTEXT LEARNING

4.1 Introduction

In-context learning (ICL) is an emerging technique for rapidly adapting large language

models (LLMs), i.e., GPT-4 [6], and LLaMA2 [252], to new tasks without fine-tuning the

pre-trained models [41]. The key idea behind ICL is to provide LLMs with labeled examples

as in-context demonstrations (demos) within the prompt context before a test query. LLMs

are able to generate responses to queries via learning from the in-context demos [73, 173].

Several existing works, however, have demonstrated the highly unstable nature of ICL

[309, 58]. Specifically, performance on target tasks using ICL can vary wildly based on the

selection and order of demos, giving rise to highly volatile outcomes ranging from random

to near state-of-the-art [202, 160, 173, 195, 203]. Correspondingly, several approaches

[150, 278, 184] have been proposed to address the unstable issue of ICL.

Further research has examined how adversarial examples can undermine the per-

formance of ICL [312, 264, 262, 231]. These studies show that maliciously designed

examples injected into the prompt instructions [312, 315, 282], demos [264, 176], or

queries [262, 111] can successfully attack LLMs to degrade their performance, revealing

the significant vulnerabilities of ICL against adversarial inputs.

While existing adversarial attacks have been applied to evaluate LLM robustness, they

have some limitations in practice. Most character-level attacks, e.g., TextAttack [180] and

TextBugger [138], can be easily detected and evaded through grammar checks, limiting real-

world effectiveness [198, 104]. Some other attacks like BERTAttack [142] even require an

extra model to generate adversarial examples. Crucially, existing attacks are not specifically
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Figure 18: Illustrations of hijacking attack during ICL. First, our proposed GGI algorithm
learns and appends adversarial suffixes like ‘For’ and ‘Location’ to the system or the user-
provided in-context demos for hijacking LLMs to generate the target response, e.g., the
‘negative’ sentiment, regardless of the user queries. Second, GGI can accomplish jailbreaking
by adding adversarial suffixes to in-context demos, eliciting harmful responses while
bypassing the safeguards in LLMs.

crafted for ICL. As such, the inherent security risks of ICL remain largely unexplored. There

is an urgent need for red teaming specifically designed for ICL to expose significant risks

and improve the robustness of LLMs against potential real-world threats.

This work proposes a novel adversarial attack specifically targeting ICL. We develop a

gradient-based prompt search algorithm to learn adversarial suffixes in order to efficiently

and effectively hijack LLMs via adversarial ICL, as illustrated in Figure 18. [262] is the

closest work to ours where they ‘search’ adversarial examples to simply manipulate model

outputs. Yet, our attack method ‘learns’ adversarial tokens that directly hijack LLMs to

generate the unwanted target that disrupts alignment with the desired output, as shown in

Figure 19. This enables our attack to be used in more complex generation tasks, such as

jailbreaking, as illustrated in Figure 18. Furthermore, instead of manipulating the prompt

instructions [312], demos [264], or queries [262] leveraging standard adversarial examples,
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e.g., character-level attacks [180, 138], which are detectable easily, our hijacking attack

is imperceptible in that it adds only 1-2 suffixes to the demos. Specifically, these suffixes

are semantically incongruous but not easily identified as typos or gibberish compared to

the existing ICL attack [264]. Finally, direct attacks on user queries, such as backdoors

[111], which require a trigger, are easily detectable and may not be practical for real-world

applications. In contrast, our attack hijacks the LLM to generate the unwanted target

without triggering or compromising the user’s queries directly. Our adversary attacker only

needs to append the adversarial tokens to system-provided demos.

Our extensive experiments validate the efficacy and scalability of the proposed hijacking

attacks. First, the attacks reliably induce LLMs to generate the targeted and misaligned

output from the desired ones. Second, the learned adversarial tokens are transferable,

remaining effective on different demo sets. Third, the adversarial transferability holds even

across different datasets for the same task. Finally, our analysis shows that the adversarial

suffixes distract LLMs’ attention away from the task-relevant concepts. Our hijacking attacks

pose a considerable threat to practical LLM applications during ICL due to their robust

transferability, imperceptibility, and scalability.

As this work represents one of the first efficient adversarial demo attacks during ICL,

strategies for defending against such attacks have yet to be thoroughly investigated. Recently,

[177] introduced a method for defending against back-door attacks at test time, leveraging

few-shot demos to correct the inference behavior of poisoned LLMs. Similarly, [269]

explored the power of in-context demos in manipulating the alignment ability of LLMs and

proposed in-context attack and in-context defense methods for jailbreaking and guarding

the aligned LLMs. Consequently, we explore the potential of using in-context demos
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Figure 19: Illustrations of ICL using clean prompt and adversarial prompt. Given the
clean in-context demos, LLMs can correctly generate the sentiment of the test queries.
The previous attacks [264] at the character level involve minor edits in some words, such
as altering ‘so’ to ‘s0’ and ‘film’ to ‘fi1m’, of these in-context demos, leading to incorrect
sentiment generated for the test queries. However, ours learns to append adversarial suffixes
like ‘For’ and ‘Location’ to the in-context demos to efficiently and effectively hijack LLMs to
generate the unwanted target, e.g., the ‘negative’ sentiment, regardless of the test query
content. It is important to highlight that the adversary attacker only needs to append the
adversarial tokens to either the system or the user-provided demos without compromising
the user’s queries directly

.

exclusively to rectify the behavior of LLMs subjected to our hijacking attacks. Our defense

strategy employs additional clean in-context demos at test time to safeguard LLMs from

being hijacked by adversarial in-context demos. The experimental results demonstrate the

efficacy of our proposed defense method against adversarial demo attacks.

This work makes the following contributions: (1) We propose a novel stealthy adversarial

attack targeting in-context demos to hijack LLMs to generate unwanted target output during

ICL. (2) We design a novel and efficient gradient-based prompt search algorithm to learn
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adversarial suffixes to demos. (3) Comprehensive experimental results across various

generation tasks demonstrate the effectiveness of our hijacking attack. (4) Our extensive

experiments reveal the transferability of the proposed attack across demo sets and datasets.

(5) The proposed defense strategy effectively protects LLMs from being compromised by

our attacks.

4.2 Related Work

4.2.1 In-Context Learning

LLMs have shown impressive performance on numerous NLP tasks [70, 135, 209].

Although fine-tuning has been a common method for adapting models to new tasks, it is

often less feasible to fine-tune extremely large models with over 10 billion parameters.

As an alternative, recent work has proposed ICL, where the model adapts to new tasks

solely via inference conditioned on the provided in-context demos, without any gradient

updates [41]. By learning from the prompt context, ICL allows leveraging massive LLMs’

knowledge without the costly fine-tuning process, showcasing an exemplar of the LLMs’

emergent abilities [227, 267].

Intensive research has been dedicated to ICL. Initial works attempt to find better ways

to select labeled examples for the demos [150, 221]. For instance, [150] presents a simple

yet effective retrieval-based method that selects the most semantically similar examples

as demos, leading to improved accuracy and higher stability. Follow-up works have been

done to understand why ICL works [280, 214, 173, 268, 122]. [280] provides theoretical

analysis that ICL can be formalized as Bayesian inference that uses the demos to recover

latent concepts. Another line of research reveals the brittleness and instability of ICL
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approaches: small changes to the demo examples, labels, or order can significantly impact

performance [160, 309, 173, 184].

4.2.2 Adversarial Attacks on LLMs

Early adversarial attacks on LLMs apply simple character or token operations to trigger

the LLMs to generate incorrect predictions, such as TextAttack [180] and BERT-Attack

[142]. Since these attacks usually generate misspelled and/or gibberish prompts that can be

detected using spell checker and perplexity-based filters, they are easy to block in real-world

applications. Some other attacks struggled with optimizing over discrete text, leading to

the manual or semi-automated discovery of vulnerabilities through trial-and-error [146,

192, 144, 201, 45, 112, 137, 232]. For example, jailbreaking prompts are intentionally

designed to bypass an LLM’s built-in safeguard, eliciting it to generate harmful content that

violates the usage policy set by the LLM vendor [232, 313, 52, 170, 108, 94, 291]. These

red teaming efforts craft malicious prompts in order to understand LLM’s attack surface

[85]. However, the discrete nature of text has significantly impeded learning more effective

adversarial attacks against LLMs.

Recent work has developed gradient-based optimizers for efficient text modality attacks.

For example, [270] presented a gradient-based discrete optimizer that is suitable for

attacking the text pipeline of CLIP, efficiently bypassing the safeguards in the commercial

platform. [315], building on [233], described an optimizer that combines gradient guidance

with random search to craft adversarial strings that induce LLMs to respond to the questions

that would otherwise be banned. More recently, [308] proposed poisoning demo examples

and prompts to make LLMs behave in alignment with pre-defined intentions.

Our hijacking attack algorithm falls into this stream of work, yet we target few-shot ICL
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instead of zero-shot queries. We use gradient-based prompt search to automatically learn

effective adversarial suffixes rather than manually engineered prompts. Importantly, we

show that LLMs can be hijacked to output the targeted unwanted output by appending opti-

mized adversarial tokens to the ICL demos, which reveals a new lens of LLM vulnerabilities

that prior approaches may have missed.

4.2.3 Defense Against Attacks on LLMs

The existing literature on the robustness of LLMs includes various strategies for defense

[152, 285, 275]. However, most of these defenses, such as those involving adversarial

training [154, 140, 82, 263] or data augmentation [203, 292], need to re-train or fine-tune

the models, which is computationally infeasible for LLM users. Moreover, restricting many

closed-source LLMs to only permit query access for candidate defenses introduces new

challenges.

Recent studies focus on developing defenses against attacks on LLMs that utilize ad-

versarial prompting. [104] and [12] have suggested using perplexity filters to detect

adversarial prompts. While the filters are effective at catching the attack strings that contain

gibberish words or character-level adversarial tokens with high perplexity scores, they fall

short in detecting more subtle adversarial prompts, like the ones used in our adversarial

demo attacks with as low perplexity as clean samples shown in Figure 23. Recently, [177]

introduced a method to mitigate backdoor attacks at test time by identifying the task and

retrieving relevant defensive demos. These demos are combined with user queries to

counteract the adverse effects of triggers present in backdoor attacks. This defense strategy

eliminates the need for modifications or tuning of LLMs. Its objective is to re-calibrate and

correct the behavior of LLMs during test-time evaluations. Similarly, [269] investigated
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the role of in-context demos in enhancing the robustness of LLMs and highlighted their

effectiveness in defending against jailbreaking attacks. The authors developed an in-context

defense strategy that constructs a safe context to caution the model against generating any

harmful content.

So far, defense mechanisms against adversarial demo attacks have not been extensively

explored. Our approach introduces a test-time defense strategy that uses additional clean

in-context demos to safeguard LLMs from adversarial in-context manipulations. In line with

prior works [177, 269, 263], this defense strategy avoids the necessity for retraining or

fine-tuning LLMs. Instead, it focuses on re-calibrating and correcting the behavior of LLMs

during evaluations at test time.

4.3 Preliminaries

4.3.1 ICL Formulation

Formally, ICL is characterized as a problem involving the conditional generation of

text [150], where an LLM M is employed to generate response yQ given an optimal task

instruction I, a demo set C, and an input query xQ. I specifies the downstream task that M

should perform, e.g., “Choose sentiment from positive or negative” used in the sentiment

generation task. C consists of N (e.g., 8) concatenated data-label pairs following a specific

template S, formally: C = [S(x1, y1); · · · ; S(xN , yN)], ‘;’ here denotes the concatenation

operator. Thus, given the input prompt as p = [I; C; S(xQ, _)], M generates the response

as ŷQ = M(p). S(xQ, _) here means using the same template as the demos but with the

label empty.
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4.3.2 Adversarial Attack on LLMs

In text-based adversarial attacks, the attackers manipulate the input x with the goal of

misleading the model to generate inaccurate or malicious outputs [315, 167]. Specifically,

given the input-output pair (x, y), the attackers aim to learn the adversarial perturbation δ

adding to x by maximizing the model’s objective function but without misleading humans

by bounding the perturbation within the “perceptual” region ∆. The objective function of

the attacking process thus can be formulated as:

max
δ∈∆

L(M(xQ + δ), yQ). (4.1)

L here denotes the task-specific loss function, for instance, cross-entropy loss for classifica-

tion tasks.

4.4 The Threat Model

4.4.1 ICL Hijacking Attack

ICL consists of an instruction I, a demo set C, and an input query xQ, providing more

potential attack vectors than conventional text-based adversarial attacks. This work focuses

on manipulating C without changing I and xQ.

Specifically, our hijacking attack learns the adversarial suffix tokens to the in-context

demos to manipulate LLMs’ output via a new greedy gradient-based prompt injection

algorithm. Given a clean demo set C = [S(x1, y1); · · · ; S(xN , yN)], our hijacking attack
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automatically produces an adversarial suffix for each demo in c, formally:

C ′ = [S(x1 + δ1, y1); · · · ; S(xN + δN , yN)], (4.2)

where C ′ denotes the perturbed demo set. To make it clear, the adversarial suffixes appended

to each demo as perturbations are different. In this case, the attack or perturbation budget

refers to the number of tokens in each adversarial suffix.

As a result, our hijacking attack induces M to generate an unwanted target output yT

via appending adversarial suffix tokens on the in-context demos as yT = M(p′). In other

words, M generates the same or different responses for the clean and perturbed prompts

depending on the True or False of M(p) = yT :


M(p) = M(p′), True,

M(p) ̸= M(p′), False,

where p = [I; C; S(xQ, _)] and p′ = [I; C ′; S(xQ, _)], respectively.

4.4.2 Hijacking Attack Objective

We express the goal of the hijacking attack as a formal objective function. Let us consider

the LLM M as a function that maps a sequence of tokens x1:n, with x ∈ {1, · · · , V } where

V denote the vocabulary size, namely, the number of tokens, to a probability distribution

over the next token xn+1. Specifically, P(xn+1|x1:n) denotes the probability that xn+1 is the

next token given the previous tokens x1:n.

Using the notations defined earlier, the hijacking attack objective we want to optimize is
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simply the negative log probability of the target token xn+1. The generated target output yT

differs from the ground truth label yQ for the training query (xQ, yQ). Formally:

L(xQ) = − logP(M(yT |p′)), (4.3)

where yTneqyQ, demonstrating the attack hijacks mathcalM to generate the target output.

For instance, the target output for the sentiment analysis task can be set as ‘positive’ or

‘negative’. For the jailbreaking task, we set the target token as ‘Sure’ aiming to elicit the

following harmful responses. In summary, the problem of optimizing the adversarial suffix

tokens can be formulated as the following optimization objective:

minimize
δi∈{1,··· ,V }|N|

L(xQ), (4.4)

where i and N denote the indices and the number of the demos, respectively.

4.4.3 Greedy Gradient-guided Injection

A primary challenge in optimizing Eq. 4.4 is optimizing over a discrete set of possible

token values. Motivated by prior works [233, 315, 271], we propose a simple yet effec-

tive algorithm for LLMs hijacking attacks, called greedy gradient-guided injection (GGI)

algorithm (Algorithm 1). The key idea comes from greedy coordinate descent: if we could

evaluate all possible suffix token injections, we could substitute the tokens that maximize

the adversarial loss reduction. Since exhaustively evaluating all tokens is infeasible due to

the large candidate vocabulary size, we instead leverage gradients with respect to the suffix

indicators to find promising candidate tokens for each position. We then evaluate all of
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these candidate injections with explicit forward passes to find the one that decreases the

loss the most. This allows an efficient approximation of the true greedy selection. We can

optimize the discrete adversarial suffixes by iteratively injecting the best tokens.

We compute the linearized approximation of replacing the demo xi in C by evaluating

the gradient ∇e
x
j
i

L(xQ) ∈ R|V |, where exj
i

denotes the vector representing the current value

of the j-th adversarial suffix token. Note that because LLMs typically form embeddings for

each token, they can be written as functions of exj
i
, and thus we can immediately take the

gradient with respect to this quantity [78, 233].

The key aspects of our GGI algorithm are: firstly, it uses gradients of the selected

token candidates to calculate the top candidates; secondly, it evaluates the top candidates

explicitly to identify the most suitable one; and lastly, it iteratively injects the best token at

each position to optimize the suffixes. This approximates an extensive greedy search in a

computationally efficient manner.

4.5 The Defense Method

Having developed the hijacking attack by incorporating adversarial tokens into the

in-context demos, we now present a straightforward yet potent defense strategy to counter

this attack. Initially, we assume that defenders treat LLMs as black-box, lacking any insight

into their training processes or underlying parameters. The defenders apply defense on the

input prompt p directly during test-time evaluation. Their goal is to rectify the behavior of

LLMs and induce LLMs to generate desired responses to user queries.

Given an input prompt p′ that includes adversarial tokens within the demos C ′, we

assume that LLMs, when presented with demos containing clean data for the same tasks,
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can understand the genuine intent of the user’s query through ICL, rather than being misled

by the adversarial demos. In this context, ‘clean data’ refers to data without any adversarial

tokens and is randomly selected from the training set. More precisely, the defenders modify

the input prompt p′ into p̃ by appending or inserting more clean demos into the demo set C ′,

as follows: p̃ = [I;C ′; C̃;S(xQ, _)]. C̃ = [S(x̃1, ỹ1); · · · ; S(x̃N , ỹN)] here denotes the clean

demos. Through this approach, the defender guarantees that the in-context demos align

with the user’s query and possess resilience against adversarial attacks. In our experiments,

we maintained an equal number of demos in C ′ and C̃ and observed that this method

resulted in effective defense across various datasets and tasks.

4.6 Experiment Setup

4.6.1 Datasets

We evaluate the performance of our LLM hijacking algorithm and other baseline algo-

rithms on several text generation benchmarks. SST-2 [241] and Rotten Tomatoes (RT) [189]

are binary sentiment analysis datasets of movie reviews. AG’s News [304] is a multi-class

news topic generation dataset. AdvBench [315] is a new adversarial benchmark to evaluate

jailbreak attacks for circumventing the specified guardrails of LLMs to generate harmful or

objectionable content. These datasets enable us to evaluate the proposed hijacking attacks

across a variety of text generation tasks, including both single token and long sequential

text generation. More details of the dataset statistics are provided in Table 8.

We show the dataset statistics in Table 8. Specifically for the SST-2 and RT sentiment

analysis tasks, we employ only 2 training queries to train adversarial suffixes using our GGI

method. We use 4 training queries for the more complex multi-class topic generation tasks,
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Table 8: Statistics of the training queries used in Algorithm 1 and test queries for the three
datasets.

Datasets Training Queries Test Queries
SST-2 2 1,000

RT 2 1,000
AG’s News 4 1,000
AdvBench 4 200

i.e., AG’s News. We randomly select 1,000 samples as user queries for testing. Similarly, we

utilize 4 training queries from Advbench [315] for the jailbreaking task and evaluate the

attack success rate on 200 randomly selected harmful queries.

4.6.2 Large Language Models

The experiments are conducted using various LLMs covering a diverse set of architectures

and model sizes, i.e., GPT2-XL [209], LLaMA-7b/13b [252], OPT-2.7b/6.7b [302], and

Vicuna-7b [61]. This enables us to comprehensively evaluate attack effectiveness on both

established and SOTA LLMs.

4.6.3 ICL Settings

For ICL, we follow the setting in [264] and use their template to incorporate the demos

for prediction. The detailed template is provided in Figure 26. We evaluate the 2-shot,

4-shot, and 8-shot settings for the number of demos. Specifically, for each test example, we

randomly select the demos from the training set and repeat this process 5 times, reporting

the average accuracy over the repetitions.

Figure 26 illustrates the prompt template employed in ICL for various tasks. For the

SST2/RT dataset, the template is structured to include an instruction, a demo set composed

of reviews and sentiment labels, and the user query. Similarly, the AG’s News dataset

template comprises the instruction, the demo set with articles and topic labels, and the user
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query. The AdvBench template includes instructions, a demo set of harmful queries and

responses, and a user’s harmful query. Additionally, examples are provided in Figure 27,

Figure 28, and Figure 29 to enhance understanding.

4.6.4 Evaluation Metrics

Several different metrics evaluate the performance of ICL and hijacking attacks. Clean

accuracy evaluates the accuracy of ICL on downstream tasks using clean demos. Attack

accuracy evaluates the accuracy of ICL given the perturbed demos. Defense accuracy

demonstrates the accuracy of ICL with the defense method against the hijacking attack.

We further evaluate the effectiveness of hijacking attacks using attack success rate (ASR).

Given a test sample (x, y) from a test set D, the clean and perturbed prompts are denoted

as p = [I;C;x] and p′ = [I;C ′;x], respectively. For the general generation tasks, such as

sentiment analysis and news topic generation, ASR is calculated as

ASR =
∑

(x,y)∈D

1(M(p′) = yT )

1(M(p) = y)
, (4.5)

where 1 denotes the indicator function and yT ̸= y. For the jailbreaking task, ASR is

calculated as:

ASR =
∑

(x,y)∈D

1(M(p′) = yH)

1(M(p) = y)
, (4.6)

where y represents a refusal response by safeguards and yH here denotes the harmful

response.
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4.6.5 Baseline Attacks

Greedy Search: We consider a heuristics-based perturbation strategy, which conducts

a greedy search over the vocabulary to select tokens, maximizing the reduction in the

adversarial loss from Eq. 4.3. Specifically, it iteratively picks the token that decreases the

loss the most at each step.

Square Attack: The square attack [16] is an iterative algorithm for optimizing high-

dimensional black-box functions using only function evaluations. To find an input x+ δ in

the demo set C that minimizes the loss in Eq. 4.3, the square attack has three steps: Step

1: Select a subset of inputs to update; Step 2: Sample candidate values to substitute for

those inputs; Step 3: Update x+ δ with the candidate values that achieve the lowest loss.

The square attack can optimize the hijacking attack objective function without requiring

gradient information by iteratively selecting and updating a subset of inputs.

Text Attack: We also utilize TextAttack (TA) [180], adopting a similar approach to the

attack described by [264], which serves as the most closely related baseline for our hijacking

attack. Unlike our word-level attack, the use of TA at the character level includes minor

modifications to some words in the in-context demos and simply flips the labels of user

queries, as depicted in Figure 19. In our experiments, we employ a transformation where

characters are swapped with those on adjacent QWERTY keyboard keys, mimicking errors

typical of fast typing, as done in TextAttack [180]. Specifically, we use the adversarial

examples for the same demos in our hijacking attack during the application of TA.
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Table 9: The performance on sentiment analysis task with and without attacks on ICL. The
‘Clean’ row in gray color represents the accuracy with clean in-context demos. Other rows
illustrate the accuracies with adversarial in-context demos. The details of the baselines in
green color are present in Section 4.6.5. Specifically, we employ TextAttack (TA) [180]
following the attack in [264] as the most closely related baseline for our attack (GGI). The
accuracies of positive (P) and negative (N) sentiments are reported separately to highlight
the effectiveness of our hijacking attack.

Model Method
SST-2 RT

2-shots 4-shots 8-shots 2-shots 4-shots 8-shots
P N P N P N P N P N P N

GPT2-XL

Clean 94.7 52.2 88.6 49.4 91.6 69.0 93.3 54.7 88.6 76.9 90.2 80.5
Square 99.4 2.0 99.8 4.2 99.4 11.0 99.8 1.5 100 4.1 99.3 7.5
Greedy 100 10.8 100 6.2 100 0.2 100 5.3 100 2.8 100 0.0

TA 95.0 2.2 99.8 17.8 99.6 21.6 95.9 8.1 96.3 41.3 96.4 47.3
GGI 100 1.2 100 0.0 100 0.0 100 2.8 100 0.0 100 0.0

OPT-6.7b

Clean 69.4 87.8 70.2 93.8 77.8 93.0 84.4 91.4 84.4 93.1 88.6 92.8
Square 99.2 31.4 93.8 72.2 99.6 29.0 98.1 42.2 97.0 68.7 99.4 33.2
Greedy 100 25.0 97.8 39.0 100 2.0 99.4 31.7 99.8 4.7 100 0.8

TA 94.8 80.8 54.8 98.6 91.6 89.4 92.5 86.1 77.6 96.4 94.0 86.3
GGI 100 0.0 98.4 2.0 100 0.2 100 2.6 99.8 0.0 100 0.2

Vicuna-7b

Clean 91.4 81.2 88.2 81.4 94.6 82.6 84.8 78.4 85.9 80.5 90.4 85.4
Square 89.2 84.4 86.6 85.8 94.0 83.8 85.9 85.4 84.6 88.6 91.6 88.4
Greedy 93.0 83.4 88.4 87.0 94.6 80.0 91.2 82.8 86.9 88.7 91.9 85.9

TA 87.0 85.2 76.2 88.2 94.2 80.6 83.3 84.2 79.6 88.6 92.1 84.4
GGI 90.6 42.2 96.4 23.2 100 0.8 87.6 36.4 95.1 35.7 100 0.2

LLaMA-7b

Clean 81.4 86.3 74.4 91.9 82.7 92.4 86.0 83.6 81.9 91.6 89.3 97.8
Square 86.8 80.0 96.8 58.6 98.0 56.4 86.9 57.4 97.4 50.1 97.8 57.4
Greedy 95.0 47.6 100 0.0 100 0.0 88.9 2.8 99.8 0.0 100 0.0

TA 87.2 77.8 93.8 69.0 99.8 8.8 83.1 57.4 94.2 68.9 99.6 3.80
GGI 100 0.4 100 0.0 100 0.0 96.8 0.0 100 0.0 100 0.0

LLaMA-13b

Clean 97.8 76.4 95.6 88.0 95.8 90.0 94.2 84.8 92.7 92.1 91.4 91.9
Square 98.4 72.8 98.2 78.4 97.8 85.4 93.6 87.4 94.4 84.1 94.2 87.6
Greedy 98.0 41.4 100 3.0 100 0.0 55.9 11.3 92.9 0.0 100 0.4

TA 98.2 72.2 92.8 92.8 97.5 87.6 94.8 81.8 88.0 94.0 92.5 89.3
GGI 99.2 37.8 100 7.2 100 0.0 99.1 3.8 86.1 3.6 100 0.0

4.7 Result and Discussion

4.7.1 ICL Performance

The rows identified as ‘Clean’ in Table 9 and Table 10 show the ICL performance on

the respective tasks when using clean in-context demos. In particular, Table 9 presents the

accuracies for the generation of positive (P) and negative (N) sentiments in the SST-2 and

RT datasets. All the tested LLMs perform well, achieving an average accuracy of 83.6%

on SST-2 and 86.7% on RT across various in-context few-shot settings. Table 10 indicates

that LLMs with ICL also perform well in the context of multi-class generation on AG’s News

dataset. The average accuracies stand at 69.1% for 4-shot settings and 72.3% for 8-shot
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Table 10: The performance of AG’s News topic generation task with and without attacks
on ICL. The clean and attack accuracies are reported separately for the four topics. These
results highlight the effectiveness of our hijacking attacks to induce LLMs to generate the
target token, i.e., “tech”, regardless of the query content.

Model Method 4-shots 8-shots
word sports business tech word sports business tech

GPT2-XL

Clean 48.5 87.0 64.9 71.9 48.2 50.6 71.0 83.6
Square 2.0 66.0 26.8 96.0 19.6 65.6 28.0 97.2
Greedy 12.8 60.4 29.2 96.4 8.0 21.2 10.0 98.8

TA 54.8 84.0 73.2 82.4 82.0 82.4 91.2 57.6
GGI 0.0 2.0 0.4 100 0.0 0.0 0.0 100

LLaMA-7b

Clean 68.2 96.8 66.6 49.0 88.6 97.4 78.2 61.0
Square 78.4 98.0 76.0 36.8 94.4 98.0 60.0 57.6
Greedy 69.6 98.8 75.2 51.6 89.6 100 68.4 73.6

TA 42.4 94.8 67.6 32.4 95.2 96.0 39.2 24.8
GGI 0.0 20.0 0.00 98.0 29.6 56.0 0.0 100

settings across various LLMs. Additionally, LLMs with ICL exhibit improved performance

with an increased number of in-context demos, particularly achieving best results with

8-shot settings.

4.7.2 Hijacking Attack Performance

While LLMs utilizing ICL show strong performance with clean in-context demos, Tables

9 and 10 reveal that hijacking attacks significantly undermine their effectiveness. While

the baseline methods, i.e., Square, Greedy, and TA, deteriorate model performance on

the smaller LLM, e.g., GPT2-XL, they fail to effectively manipulate the larger LLMs, e.g.,

LLaMA-7/13 b. Additionally, these methods become inefficient as the number of in-context

demonstrations increases. Compared to the baselines, our hijacking attacks successfully

induce LLMs to generate the targeted positive sentiment through a few shots of adversarially

perturbed demos, resulting in predominantly higher positive accuracies than the negative

ones, as shown in Tables 9. The positive test samples achieve almost 100% accuracy. On the

contrary, the negative ones get nearly 0% accuracy in most settings. For the more complex

multi-class AG’s News topic generation task, the effectiveness of those baseline attacks

decreases significantly. Only our GGI attack successfully hijacks the LLMs to generate the
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Table 11: ASR among different datasets, models, and attack methods. Best scores are in
bold.

Model Method SST-2 RT AG’s News
2-shots 4-shots 8-shots 2-shots 4-shots 8-shots 4-shots 8-shots

GPT2-XL

Square 98.0 97.8 94.2 98.7 97.9 95.9 64.9 65.2
Greedy 94.6 96.9 99.9 97.4 98.6 100 68.3 87.3

TA 89.6 91.0 89.0 85.9 77.5 74.6 15.1 15.9
GGI 99.4 100 100 98.6 100 100 99.1 100

LLaMA-7b

Square 48.1 65.9 70.6 48.4 69.9 69.7 10.3 15.9
Greedy 64.2 100 100 64.3 99.8 100 14.3 22.1

TA 48.2 59.5 95.4 45.8 58.0 97.8 9.3 6.8
GGI 97.7 100 100 90.7 99.9 100 82.8 77.9

Vicuna

Square 49.1 46.4 53.1 45.5 44.9 49.3 7.4 13.8
Greedy 52.5 47.4 55.0 51.4 45.8 51.0 7.8 13.4

TA 47.1 39.8 54.4 43.3 41.2 51.3 3.9 7.7
GGI 65.3 82.6 99.6 61.3 88.9 99.8 14.1 15.0

LLaMA-13b

Square 62.8 59.9 56.2 52.8 55.0 53.1 14.2 19.5
Greedy 75.9 98.4 100 36.6 91.4 91.8 12.1 19.7

TA 63.0 50.0 54.8 56.3 46.7 51.5 18.4 19.1
GGI 79.7 96.3 100 95.2 81.5 100 54.2 65.6

target topic ‘tech’, as shown in Table 10.

In addition to the attack accuracy performance provided in Table 9 and 10, we present

ASRs for various attacks across the three datasets. As outlined in Table 11, our GGI attack

achieves the highest ASRs, substantiating its highest effectiveness in hijacking the LLM to

generate the targeted output. In sentiment analysis tasks like SST-2 and RT, some attacks

exhibit high ASRs. Meanwhile, for the more complex multi-class topic generation task,

such as AG’s News, only our GGI attack achieves high ASRs. This further emphasizes the

potential effectiveness of our hijacking attack on more complex generative tasks, such as

question answering.

4.7.3 Jailbreaking Performance

We randomly select 200 samples from AdvBench [315] as harmful queries to evaluate

whether our GGI can learn adversarial tokens that generate harmful or objectionable

responses. As long as LLMs generate harmful responses instead of refusal answers, as

illustrated in Figure 29, we consider it as a successful attack. When we input clean queries

directly into the tested LLMs, i.e., LLaMA2-7b-chat, Vicuna-7b, and LLaMA3-8b-chat, their
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Table 12: Jailbreaking performance on 200 randomly selected harmful queries from Ad-
vBench.

Model Method ASR
2-shots 4-shots

LLaMA2-7b-chat Clean Query Only 1.5
ICA [269] 3.5 4.0
GGI (ours) 39.5 54.5

Vicuna-7b Clean Query Only 65.0
ICA [269] 4.0 67.5
GGI (ours) 80.0 91.5

LLaMA3-8b-chat Clean Query Only 21.0
ICA [269] 20.0 61.0
GGI (ours) 63.5 83.5

safeguards generally prevent the generation of harmful content, resulting in only a few

harmful responses, as evidenced by the low ASRs in Table 12. Recently, [269] proposed

In-Context Attack (ICA), which employs harmful demos to subvert LLMs for jailbreaking,

which achieves slightly higher ASRs as illustrated in Table 12. Furthermore, we utilize

GGI to efficiently learn adversarial tokens from harmful demos and then append them to

the demos during ICL. Our attack achieves the highest ASRs compared to the baselines,

demonstrating the effectiveness of our hijacking attack in inducing harmful responses

for jailbreaking, as shown in Figure 29. The jailbreaking results further illustrate the

applicability of our GGI method to more complex generative tasks, effectively hijacking the

model to generate malicious responses.

4.7.4 Impact of Number of In-context Demos

We extend our investigation to explore the impact of in-context demos on adversarial

ICL attacks. We observe a substantial impact on the attack performance in ICL based

on the number of demos employed. As indicated in Tables 9 and 10, an increase in the

number of in-context demos correlates with a higher susceptibility of the attack to hijack

LLMs, resulting in the generation of target outputs with greater ease. Specifically, in the
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Figure 20: Impact of LLM size on adversarial robustness. ASRs on the AG’s News topic
generation task using different sizes of OPT models, i.e., OPT-2.7b and OPT-6.7b, with two
different few-shot settings.

8-shot setting, LLMs consistently exhibit significantly lower accuracies in negative sentiment

generation, demonstrating a higher rate of successful attacks compared to the 2-shot and

4-shot settings. Moreover, the attacks demonstrate higher ASRs as the number of in-context

demos used in ICL increases, as shown in Table 11.

4.7.5 Impact of Sizes of LLMs

Results in Table 11 reveal that the ASRs on GPT2-XL are significantly higher than those

on LLaMA-7b, suggesting that hijacking the larger LLM is more challenging. Here, we

continue examining how the size of LLMs influences the performance of hijacking attacks.

Table 13 illustrates the performance of sentiment analysis tasks with and without attacks

on ICL using different sizes of OPT, i.e., OPT-2.7b and OPT-6.7b. These results further

highlight that the smaller LLM, i.e., OPT-2.7b, is much easier to attack and induce to
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Table 13: The performance of sentiment analysis task with and without attacks on ICL using
different sizes of OPT.

Model Method
SST-2 RT

2-shots 4-shots 8-shots 2-shots 4-shots 8-shots
P N P N P N P N P N P N

OPT-2.7b

Clean 98.5 38.6 85.6 62.8 58.4 76.4 98.1 36.6 81.2 68.4 57.8 89.6
Square 100 0.0 100 0.0 100 1.8 100 1.3 100 0.0 99.6 7.5
Greedy 100 0.0 100 0.0 100 0.0 100 0.4 100 0.2 100 0.0

TA 99.6 13.8 99.8 26.8 99.0 7.2 97.6 52.9 97.2 59.7 99.4 6.8
GGI 100 0.0 100 0.0 100 0.0 100 0.0 100 0.0 100 0.0

OPT-6.7b

Clean 69.4 87.8 70.2 93.8 77.8 93.0 84.4 91.4 84.4 93.1 88.6 92.8
Square 99.2 31.4 93.8 72.2 99.6 29.0 98.1 42.2 97.0 68.7 99.4 33.2
Greedy 100 25.0 97.8 39.0 100 2.0 99.4 31.7 99.8 4.7 100 0.8

TA 94.8 80.8 54.8 98.6 91.6 89.4 92.5 86.1 77.6 96.4 94.0 86.3
GGI 100 0.0 98.4 2.0 100 0.2 100 2.6 99.8 0.0 100 0.2

generate unwanted target outputs, such as ‘positive’, in the sentiment analysis tasks. Figure

20 illustrates our proposed hijacking attack performance using ASR on two OPT models of

varying sizes in AG’s News topic generation task. It clearly shows that attacking the smaller

OPT2-2.7b model achieves a much higher ASR in both settings, confirming our finding and

others [261] that larger models are more resistant to adversarial attacks.

4.7.6 Comparison of Hijacking Attacks

In contrast to baseline hijacking attacks, i.e., Square and Greedy, our GGI exhibits

superior performance in generating targeted outputs, as evidenced by the results in Table

9 and 10, along with the highest ASRs highlighted in Table 11. This underscores the

effectiveness of GGI as a more potent method of attack.

To further illustrate the efficiency of our GGI, we present the objective function values of

Eq. 4.3 in Figure 21 for various attack methods. Since our GGI attack enjoys the advantages

of both greedy and gradient-based search strategies as depicted in Algorithm 1, the values

of the object function decrease steadily and rapidly, ultimately reaching the minimum loss

value. On the other hand, both the Square and Greedy attacks use a greedy search strategy,

with fluctuating results that increase and decrease the loss value, unable to converge to the

minimum loss value corresponding to the optimal adversarial suffixes.
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Figure 21: An illustration of the learning objective values during iterations among different
attacks on SST2 using GPT2-XL with 8-shots.

4.7.7 Defense Method Performance

Table 14 presents ASRs of our hijacking attack when countered with the proposed

defense mechanism that uses additional clean demos and the baseline defense Onion [197].

Our proposed defense method is tested in two different settings. The preceding (Pre) setting

places the clean demos before the adversarial demos in the sequence p̃ = [I; C̃;C ′;S(xQ, _)].

Conversely, the proceeding (Pro) setting adds the clean demos after the adversarial demos as

p̃ = [I;C ′; C̃;S(xQ, _)]. The decreases in ASRs of our hijacking attack affirm the effectiveness

of these defense methods. Notably, the results of Pre in considerably lower ASRs compared

to Pro, which relates to the mechanism through which our hijacking attack induces LLMs



92

Table 14: The performance of the defenses using ASRs across various LLMs and datasets.
Adv denotes our hijacking attack using the adversarial demos. Adv+Clean, i.e., Pre and Pro,
represents the proposed defense method, leveraging extra clean demos with adversarial
demos. Onion [197] is the defense method based on outlier word detection and filtering.

Model
SST-2 RT AG’s News

Adv Adv+Clean Onion Adv Adv+Clean Onion Adv Adv+Clean OnionPre Pro Pre Pro Pre Pro
GPT2-XL 100 100 99.6 100 100 100 97.4 100 99.1 75.5 80.5 83.7
OPT-6.7b 98.2 44.9 52.5 59.3 99.9 50.2 57.8 74.2 65.6 23.5 22.5 14.1
LLaMA-7b 100 49.1 98.3 99.6 100 53.1 99.8 99.9 82.8 42.2 88.2 9.8

to generate target outputs, as discussed in Sec 4.7.10. Although the Onion method is

ineffective at defending against hijacking attacks in sentiment analysis tasks, it successfully

protects LLMs from hijacking attacks in more complex topic generation tasks. Furthermore,

the results indicate that all the defense methods are ineffective on small-sized LLMs, such

as the GPT2-XL used in our experiments, due to their limited emergent abilities.

4.7.8 Transferability of GGI

Our GGI exhibits two advanced transferabilities: across different demo sets and across

different datasets of the same task. Firstly, the adversarial tokens derived from any demo

can be used in any ICL demo set. Once selected, these adversarial tokens consistently

hijack LLMs regardless of the demos employed by developers or users, demonstrating their

robustness and effectiveness. As illustrated in Figure 22, we evaluated the same adversarial

tokens on three distinct demo sets from SST-2 and RT, respectively. Both sets resulted in high

ASRs on both SST-2 and RT datasets, highlighting their transferability across different demo

sets. Furthermore, the adversarial tokens, such as ‘NULL’ and ‘Remove,’ as illustrated in

Figure 27, used in sentiment analysis tasks were learned from the RT dataset and effectively

applied to the SST-2 dataset. Our attack GGI achieves promising adversarial attack success

rates on both SST-2 and RT datasets, as demonstrated by Figure 22.
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Figure 22: Transferability of GGI across different demo sets and different datasets of
the same task. The normal and striped bars indicate the demos are from SST-2 and RT,
respectively. Different colors represent test queries from different datasets.

4.7.9 Stealthiness of GGI

Figure 23 presents the perplexity scores for the input prompts from different attack

methods. The perplexity scores for the word-level adversarial attacks, i.e., Greedy, Square,

and Ours, exhibit non-significant increases compared to the clean samples, highlighting

their stealthiness. This demonstrates that using a perplexity-based filter, e.g., Onion [197],

would be challenging to defend against our attacks. However, the character-level attack TA,

used in [264], results in significantly higher perplexity scores than others. This makes it

more easily detected or corrected by basic grammar checks, as illustrated in Figure 27 and

Figure 28.
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Figure 23: Average perplexity scores from LLaMA-7b on 100 random samples under 4-shots
setting of RT derived from three separate runs under various attacks.

4.7.10 Diverting LLM Attention

Attempting to interpret the possible mechanism of our hijacking attacks, we show

an illustrative example using attention weights from LLaMA-7b on the SST2 task with

both clean and perturbed prompts. As depicted in Figure 24b, the model’s attention for

generating the sentiment token of the test query has been diverted towards the adversarial

suffix tokens ‘NULL’ and ‘Remove’. Compared to the attention maps using the clean prompt

(Figure 24a), these two suffixes attain the largest attention weights represented by the

darkest green color. This example illuminates a possible mechanism for why our hijacking

attack can induce the LLM to generate the targeted outputs - the adversarial suffixes divert

the LLMs’ attention away from the original query.
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(a)

(b)

Figure 24: Attentions maps generated using (a) clean and (b) adversarial perturbed prompts.
In (b), the adversarial suffix tokens, i.e., ‘NULL’ and ‘Remove’, are underlined in red. Darker
green colors represent larger attention weights. The prompts are tokenized to mimic the
actual inputs to the LLMs. Best viewed in color.

Additionally, Figure 25 illustrates the attention distribution for the perturbed prompts

after applying the preceding and proceeding defense methods. Notably, in the demos, the

model primarily focuses on the front segments of demos, which are indicated by a darker

green color. Therefore, the model converts its attention to the front segments, which are the

extra clean samples, in the preceding method. These clean samples effectively re-calibrate

and rectify the model’s behavior, leading to a significant reduction in ASRs, as shown in

Table 14. In contrast, the first few demos remain adversarial in the proceeding method,

rendering it ineffective in defending against the adversarial demo attack.

Overall, these attention maps visualize how the adversarial suffixes distract LLMs from

focusing on the relevant context to generate the unwanted target output and how our

proposed defense methods rectify the behavior of LLMs given the extra clean demos.
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(a)

(b)

Figure 25: Attentions maps generated using (a) Preceding and (b) Proceeding defense
methods. Best viewed in color.

4.8 Conclusion

This work reveals the vulnerability of ICL via crafted hijacking attacks. By appending

imperceptible adversarial suffixes to the in-context demos using a greedy gradient-based

algorithm, our attack GGI effectively hijacks the LLMs to generate the unwanted target

outputs by diverting their attention from the relevant context to the adversarial suffixes.

Furthermore, GGI can accomplish jailbreaking by adding adversarial suffixes to in-context

demos, eliciting harmful responses while bypassing the safeguards in LLMs. The advanced

transferability of GGI makes it significantly more efficient and scalable for real-world

applications. GGI’s imperceptibility and stealthiness highlight the difficulty of defending

against it with simple grammar checks and perplexity-based filters. We propose a test-time

defense strategy that effectively protects LLMs from being compromised by our attack. We

will continue studying novel attack and defense techniques for more robust ICL approaches.
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Figure 26: Template designs for all the datasets used in our experiments. We also provide
examples for these datasets to ensure a better understanding.
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Algorithm 1: Greedy Gradient-guided Injection (GGI)
Input : Model: M, Iterations: T , Batch Size: b, Instruction: I, Demos: C, Query:

(xQ, yQ) Target: yT
Initialization: p′0 = [I; [S(x1 + δ1, y1); · · · ; S(xN + δN , yN)]; S(xQ, yT )]
repeat

for i ∈ N do
[δi1 ; ...; δik ] = Top−k(−∇p′L(M(ŷ|p′t−1), yT ))

/* Compute top-k substitutions

based on negative gradients */

K = {[δi1 ; ...; δik ] | i = 1, ..., N}

/*Form the set of top-k substitutions*/

B = {(δi1, . . . , δib) | (δi1, . . . , δik) ∈ K}

/* Introduce variability by selecting different

substitutions to avoid local minima*/

for i ∈ N do
δ⋆i = δij, where j = argminδib

L(M(ŷ|p′t−1), yT )

/* Compute best replacement

for each token by finding

the substitution that minimizes the loss */

∆ = [δ⋆1; ...; δ
⋆
N]

p′t = [I; [S(x1 + δ⋆1, y1); · · · ; S(xN + δ⋆N , yN)]; S(xQ, yT )]

/* Update the prompt with the optimized tokens */

until T times;
Output :Optimized prompt suffixes [δ⋆1, · · · , δ⋆N ]
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Figure 27: Visualization of an adversarial example generated by baseline and our attacks
on SST-2 via attacking LLaMA-7b.
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Figure 28: Visualization of an adversarial example generated by baseline and our attacks
on AG’s News via attacking LLaMA-7b.
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Figure 29: Visualization of an adversarial example generated by baseline and our attacks
on AdvBench via attacking LLaMA2-7b-chat.
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CHAPTER 5 SUMMARY AND FUTURE WORKS

5.1 Summary

This dissertation has delved into the realm of Trustworthy AI, encompassing various

principles and methodologies. My contributions to the field of Trustworthy AI are centered

on multiple approaches, including enhancing robustness, improving explainability and

interpretability, and ensuring fairness, significantly focusing on designing for reliability and

incorporating both algorithmic and practical perspectives.

Our work named AttCAT, introduced in Chapter 2, proposed a novel approach to

generate explanations for the outputs of Transformers. This work addressed the major

issues in generating faithful and confident explanations for Transformers via a novel

attentive class activation tokens approach. AttCAT leveraged the features, their gradients,

and corresponding attention weights to define the so-called impact scores, which quantify

the impact of inputs on the model’s outputs. The impact score gave both the magnitude

and directionality of the input tokens’ impact.

Unlike AttCAT, which only focused on improving the explainability, another work named

CIA, introduced in Chapter 3, proposed a unified approach to enhance both fairness and

explainability of DNNs. CIA improved DNN’s fairness by de-correlating the target variable

with the sensitive attribute in the training set. CIA generates counterfactual interpolations

from a generative model. We further develop a gradient-based feature attribution method

leveraging the counterfactual interpolations from the CIA to generate high-quality and fair

explanations.

To further invest other principles of Trustworthy AI, Chapter 4 shifts the focus toward
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Figure 30: An illustration of future research directions.

the security and safety issues of LLMs using our novel attack approach named CGI. This

work revealed a new vulnerability of ICL via crafted hijacking attacks by adversarial users.

By appending imperceptible adversarial suffixes to the in-context demos using a greedy

gradient-based search, our GGI attack effectively hijacked the LLMs to generate the targeted

unwanted outputs by diverting LLM’s attention from the relevant context to the adversarial

suffixes. Our findings highlight an urgent need to develop more robust ICL approaches.

5.2 Future Works

My future research will focus on integrating and applying Trustworthy AI principles

in various research domains, as shown in Figure 30. Specifically, foundational research

on LLMs involves incorporating Trustworthy AI principles, including fairness, privacy,

safety, and reliability, into their development and deployment [245]. Additionally, it is

advantageous to explore the use of LLMs in use-inspired research areas, such as social

sciences, economic science, healthcare, education, and more, addressing practical challenges

and optimizing their performance in diverse environments [110]. Lastly, I am excited to

continue my research on Artificial General Intelligence (AGI), which has the potential for
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various applications, including in industry and human-AI interactions [130]. Through these

efforts, I strive to contribute to the development of AI systems that are not only powerful

and efficient but also ethical and reliable [213].

5.2.1 LLMs: Foundational Research

The foundational research in LLMs has focused on various aspects, such as model

architecture, training techniques, and the ethical implications of their deployment [41].

I am committed to systematically incorporating established Trustworthy AI principles to

ensure that LLMs are developed and deployed with an emphasis on ethics, transparency,

reliability, and other key values. Research challenges include evaluating and mitigating

biases in LLM outputs, protecting privacy, improving the explainability and reliability of

model decisions, and identifying and addressing safety issues [245].

Fairness in LLMs is a critical research area because these models can potentially prop-

agate and amplify biases present in their training data [245, 305, 139]. For instance,

Bender et al. [34] highlighted the “stochastic parrots” problem, where LLMs reproduce

patterns from their training data without understanding context or nuance, leading to

biased and sometimes harmful outputs. Efforts to mitigate these issues include techniques

like adversarial debiasing [297, 307] and the incorporation of fairness constraints during

training [295, 163]. Researchers also advocate for the use of diverse and representative

training datasets to minimize bias [199] and ensure more equitable model performance

across different demographic groups [42]. However, bias issues can occur at any point

during the token generation when applying LLMs [84]. This can result in outputs that

inadvertently reinforce stereotypes or overlook certain viewpoints [139]. Addressing these

biases is crucial to ensuring that LLMs produce content that is fair and equitable. My future
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research goal is to identify and mitigate biases in LLMs to ensure that the generated content

is fair, unbiased, and reflects diverse perspectives.

Privacy is another significant concern in the deployment of LLMs. Training LLMs often

involves using vast amounts of data, some of which may contain sensitive or personally

identifiable information. Abadi et al. [1] introduced the concept of differential privacy

for deep learning, providing a framework to train models while preserving the privacy of

individual data points. Further advancements, such as machine unlearning [153, 156],

have improved the privacy guarantees for LLMs without compromising their performance.

These techniques are essential for ensuring that LLMs can be used in applications where

data confidentiality is paramount [289]. I will delve into proposing privacy-preserving

approaches, such as machine unlearning and model editing, to reduce the exposure of

personal information while still upholding the performance and effectiveness of LLMs.

Safety and robustness are additional paramount considerations in the development

and deployment of LLMs. Unintended outputs, such as generating harmful or misleading

information, pose significant risks [125]. Recently, the development of ethical guidelines

and frameworks has been proposed to support the safe and robust use of LLMs [266].

Additionally, continuous monitoring and feedback loops are required to detect and mitigate

any harmful behaviors that may emerge post-deployment [185]. By functioning as both red-

teaming and blue-teaming, my future research will contribute to identifying and mitigating

safety and robustness issues in LLMs.

5.2.2 LLMs: Use-Inspired Research

LLMs leverage vast amounts of text data to understand and generate human-like text,

providing powerful tools for numerous fields, including social sciences [314], economic
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sciences [306], healthcare [286], education [179], and others [186, 298].

In the social sciences, LLMs have become invaluable for analyzing large datasets, such

as social media content, surveys, and historical texts. Researchers use LLMs to uncover

patterns and trends in human behavior, sentiment, and social dynamics [314]. For instance,

studies have employed LLMs to analyze public opinion on social issues [95], detect fake

news [9], and understand the spread of misinformation [134]. By processing vast amounts

of unstructured text, LLMs enable social scientists to perform analyses that were previously

unfeasible. These advancements have facilitated a deeper understanding of societal trends

and behaviors, enhancing the predictive capabilities and the formulation of social theories

[314]. My future research in social sciences aims to investigate the ethical implications

and challenges associated with using LLMs in social research, ensuring the responsible and

trustworthy application of these advanced technologies.

In the field of economic sciences, LLMs play a crucial role in analyzing financial reports,

news articles, and other economic texts [306]. They can extract valuable insights about

market trends, economic indicators, and corporate strategies. Researchers have used LLMs

to predict stock market movements [306], analyze consumer sentiment [220], and assess

the economic impact of policy changes [93]. By automating the analysis of textual data,

LLMs help economists make more informed decisions and develop robust economic models.

This integration of LLMs into economic research has led to more accurate forecasting

and a better understanding of economic phenomena. By utilizing LLMs and collaborating

with economic scientists, I aim to derive valuable insights into market trends, economic

indicators, and corporate strategies, thereby improving the predictive accuracy of economic

models. Additionally, I will explore the ethical considerations and challenges in integrating
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LLMs into economic research, ensuring that these powerful tools are used responsibly and

effectively.

Recently, LLMs have shown tremendous potential in healthcare by assisting in diag-

nostics, patient care, and medical research [286]. They can analyze electronic health

records, medical literature, and patient feedback to provide insights into disease patterns,

treatment outcomes, and patient experiences. For example, LLMs have been used to predict

disease outbreaks, identify potential drug interactions, and generate personalized treat-

ment plans [33]. Moreover, LLMs facilitate the synthesis of medical research, helping

healthcare professionals stay updated with the latest advancements. The ability of LLMs

to process and analyze vast amounts of medical data enhances clinical decision-making

and improves patient outcomes [119]. I will address the ethical and practical challenges

associated with deploying LLMs in healthcare, ensuring that these advanced technologies

are implemented in a trustworthy and beneficial manner to improve patient outcomes and

clinical decision-making

In education, LLMs support personalized learning and administrative efficiency [179].

They can develop tailored educational content, provide real-time feedback, and assist in

grading and assessment. LLMs help educators create more engaging and interactive learning

experiences by generating educational materials that cater to individual student needs

[253]. The integration of LLMs in educational settings enhances the learning experience

by making education more accessible, personalized, and effective [279]. I will investigate

the ethical considerations and challenges of integrating LLMs into educational settings,

ensuring that these technologies are used responsibly to make education more accessible

and personalized.
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5.2.3 Artificial General Intelligence (AGI)

Artificial General Intelligence (AGI) represents the concept of machines possessing the

ability to understand, learn, and apply knowledge across a wide range of tasks, exhibiting

cognitive abilities comparable to human intelligence [89]. Unlike traditional narrow AI,

which is designed for specific tasks, AGI aims for a broader, more adaptable intelligence.

A significant step towards AGI involves the development of multimodal LLMs, which

can process and generate not just text, but also images, audio, and other types of data,

providing a more comprehensive understanding and interaction with the world [277].

For example, models like OpenAI’s DALL-E [310] have shown impressive capabilities in

generating images from textual descriptions and vice versa, showcasing the potential of

multimodal approaches. This integration allows for more nuanced and context-aware AI

systems, bringing us closer to AGI by enhancing their ability to comprehend and interact

with the world in a human-like manner [191]. In broadening the scope of LLMs, my

research will venture into their application in multi-modal contexts. The cornerstone of my

research is the integration of LLMs with other data processing technologies, such as image

and speech recognition, aiming for a more nuanced and comprehensive interpretation of

real-world data.

Furthermore, the ability of AGI to understand and synthesize diverse data types enables

more innovative and efficient solutions across multiple areas. The applications of AGI

span various industries [126]. For example, in the automotive industry, AGI can enhance

autonomous driving systems by integrating visual data from cameras, textual data from

traffic reports, and auditory data from environmental sounds [79]. Additionally, AGI can
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facilitate more natural and intuitive communication, understanding not only the literal

meaning of words but also the context, emotions, and subtleties behind human interactions.

This advancement is crucial in applications like customer service, where AGI can provide

personalized and empathetic responses, and in education, where it can adapt to the

learning styles and needs of individual students [2]. By improving the quality of human-AI

interaction, AGI can enhance user experience and foster greater trust and collaboration

between humans and machines [14].

My research on the application of AGI aims to not only advance AI capabilities but also

redefine the nature of human-AI interaction. The potential for deeper, more meaningful

collaboration between humans and AI is significantly increased by creating AI systems that

can understand and interact in more human-like ways. This could lead to innovations

in our work with AI, making these interactions more intuitive and effective. In pursuing

this research, special attention will be paid to the ethical and social implications of such

advanced AI systems. Ensuring that these multi-modal AI models adhere to ethical standards

and positively impact society will be a key focus.
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APPENDIX B

For the role of AIGC in this PhD dissertation, I only use ChatGPT for grammar checking,

proofreading, and revising the content I have already written. I did not use any AIGC tools

to generate creative content.
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As our society moves increasingly towards being AI-centric, the dependence on AI in

high-stakes areas, such as healthcare, business, education, and many others, emphasizes

the need for its trustworthiness. Trustworthy AI has attracted increasing attention from

government bodies and various scientific communities. It refers to the development and

deployment of AI systems that are reliable, ethical, and transparent, ensuring that they

align with human values and societal norms.

This dissertation has delved into the realm of Trustworthy AI, encompassing various

principles and methodologies. This research in Trustworthy AI focuses on several key areas,

such as enhancing robustness, improving explainability and interpretability, and ensuring

fairness. A significant emphasis is placed on designing for reliability and incorporating both

algorithmic and practical perspectives.

Specifically, Chapter 2 introduces "AttCAT: Explaining Transformers via Attentive Class

Activation Tokens," which proposes a novel method for generating reliable explanations for

Transformer models using attentive class activation tokens to evaluate input token impacts.



153

In Chapter 3, "Counterfactual Interpolation Augmentation (CIA): A Unified Approach to

Enhance Fairness and Explainability of DNN," a method is presented to improve fairness

and explainability in deep neural networks. This is achieved through counterfactual inter-

polations that de-correlate sensitive attributes, enhancing both fairness and interpretability.

Chapter 4 discusses "Hijacking Large Language Models via Adversarial In-Context Learning,"

revealing a new vulnerability in LLMs. It demonstrates how imperceptible adversarial

suffixes can manipulate LLM outputs, highlighting the need for more robust defenses.

Overall, these works contribute significantly to Trustworthy AI by proposing innovative

approaches to address key challenges in AI systems’ robustness, explainability, and fairness.
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