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Abstract
This work tackles a central machine learning
problem of performance degradation on out-of-
distribution (OOD) test sets. The problem is par-
ticularly salient in medical imaging based diag-
nosis system that appears to be accurate but fails
when tested in new hospitals/datasets. Recent
studies indicate the system might learn shortcut
and non-relevant features instead of generalizable
features, so-called ‘good features’. We hypothe-
size that adversarial training can eliminate short-
cut features whereas saliency guided training can
filter out non-relevant features; both are nuisance
features accounting for the performance degrada-
tion on OOD test sets. With that, we formulate a
novel model training scheme for the deep neural
network to learn good features for classification
and/or detection tasks ensuring a consistent gen-
eralization performance on OOD test sets. The
experimental results qualitatively and quantita-
tively demonstrate the superior performance of
our method using the benchmark CXR image data
sets on classification tasks.

1. Introduction
Learning good feature representation that generalizes well to
Out-Of-Distribution (OOD) test sets is a central challenge in
machine learning. Recently, Deep Neural Network (DNN)
has demonstrated impressive performance in classification
and objection detection tasks on Independent and Identi-
cally Distributed (IID) test sets (Li et al., 2020b). Model
regularization techniques, e.g., those based on parameter
sparsity and loss function smoothing, used in conjunction
with adversarial training, have been proven effective on mit-
igating robust overfitting (Rice et al., 2020) on IID test sets.
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Nevertheless, the performance degradation on OOD test sets
remains a salient problem (Shao et al., 2020). One observa-
tion is that the current approach introduces a nearly ideal
scenario for DNN to learn spurious shortcuts or non-relevant
features (Geirhos et al., 2020) that do not exist in OOD test
sets. In medical imaging systems, the problem becomes
even more salient due to the significant distribution shift
between imaging data sets acquired from different hospitals,
populations, and time periods. As a result, the AI imaging
system that is seemingly effective on training sets often does
not generalize well to new hospitals or data sets (DeGrave
et al., 2021). Fortunately, in the relatively closed medical
imaging environment, we are not so much concerned about
adversarial OOD test sets. Instead, we consider how to
leverage adversarial IID data sets for learning good features.

Figure 1. Motivation examples to illustrate the shortcut features
(top left) and non-relevant features (top right). Good features are
highlighted with high salience in the second rows, overlapping with
radiologists’ annotations. The heatmap based DNN interpretations
are generated by FullGrad.

Here we give two motivation examples to illustrate the
above-mentioned problem using salience based model ex-
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planation methods. Salience methods are a main body of
explainable machine learning approaches that quantify indi-
vidual attribution of input features to the output. Exemplar
methods include Integrated Gradient (Sundararajan et al.,
2017; Pan et al., 2021), Grad-CAM (Selvaraju et al., 2017),
Salience Map (Simonyan et al., 2013) and FullGrad (Srini-
vas & Fleuret, 2019). In Figure 1, the left example shows the
shortcut features and the right example shows non-relevant
features are used to predict COVID positive cases. Both
types of features can harm the generalizability of the DNN
models to OOD test sets. The bounding box represents ra-
diologists’ annotated pathological features also known as
symptom reasoning (Yang et al., 2019), which align well
with the high saliency regions highlighted by our saliency
guided adversarial training (SGA) scheme, but not the base-
line cross-entropy based training.

How can we develop an effective robust training scheme to
learn the good features for generalizing to test sets? There
are four types of test cases, i.e., IID, Adversarial IID, OOD,
and Adversarial OOD. Adversarial test cases are rare in
the medical imaging system since it is a relatively closed
environment that takes pre-processed clean imaging inputs.
Thus a major challenge is that the AI system tends to learn
and exploit non-relevant features and/or shortcut features,
as opposed to generalizable features from training, leading
to downgraded performance on OOD test sets.

Recent studies (Maguolo & Nanni, 2021; Cohen et al.,
2020a) demonstrate that CXR classification systems might
depend more on nuisance features generated by different
medical devices with various manufacturing standards and
acquisition parameters. Similar to adversarial perturbation,
those nuisance features do not impede human recognition
but is obvious to DNN models, particularly when they lay
on extremely clean background around the CXR borders
(Li & Zhu, 2020). As shown by case 1 (top left in Fig-
ure 1), model using those shortcut features would have
a poor generalization on OOD test sets. To enhance the
OOD generalization, Yi et al. (2021) proves that model
trained robust to adversarial perturbation generalizes well
on OOD data. Base on their work, we further hypothesize
that adversarial training (Madry et al., 2017) can eliminate
those shortcut features since adversarial perturbation are
also imperceptible and usually considered as the worst case
noise. On the other hand, Ismail et al. (2021) demonstrate
a saliency guided training encourage the model to learn
and assign low gradient values to non-relevant features in
model predictions, resulting in a more faithful learning of
the intended features. Both have been developed to improve
feature learning for better generalizability. Here we pro-
pose a novel saliency guided adversarial training for better
feature representation learning. The saliency guided compo-
nent eliminates the non-relevant features by reducing their
gradient values, whereas adversarial training enhances the

robustness of model against learning shortcut features by
adding noise to the most relevant features. Using CXR
based experiments, we demonstrate that our SGA training
scheme learns generalizable features for improving the test
performance on the OOD CXR data sets.

2. Related Work
To enhance model robustness against adversarial ID and
OOD examples, various robust training techniques have
been proposed, including those training with augmented
adversarial examples, aka, adversarial training (Madry et al.,
2017), robust regularization (Tack et al., 2021; Chen et al.,
2019; Boopathy et al., 2020), and improved loss functions,
e.g., (Li et al., 2020b). Here we focus on the related works
in robust training.

2.1. Robust training for IID test cases

One line of approaches (Kurakin et al., 2016; Sinha et al.,
2017; Zhang et al., 2019; Shafahi et al., 2019) are based on
adversarial training (Goodfellow et al., 2014) and achieve
effective robustness against different adversarial attacks,
where the training dataset is augmented with adversarial ex-
amples. Adversarial training has also been shown effective
in learning robust features for enhanced robustness (Ilyas
et al., 2019; Madry et al., 2017). However, these methods
have trade-offs between accuracy and adversarial robustness
(Tsipras et al., 2018) and are computationally expensive
in adversarial sample generation (Zhang et al., 2019). To
reduce the computational burden, Shafahi et al. (Shafahi
et al., 2019) propose a training algorithm, which improves
the efficiency of adversarial training by updating both model
parameters and image perturbation in one backward pass.
(Wong et al., 2020) discover that it is possible to train em-
pirically robust models using a much weaker and cheaper
FGSM based adversary training combined with random
initialization.

Another line of defending strategy against adversaries, other
than augmenting the training dataset, is to learn robust fea-
ture representations by using model ensembles or altering
network architectures (Taghanaki et al., 2019; Mustafa et al.,
2019; Tramèr et al., 2017; Liao et al., 2018; Pang et al.,
2019; Xu et al., 2017; Meng & Chen, 2017). For example,
(Taghanaki et al., 2019) augment DNNs with the radial basis
function kernel to further transform features via kernel trick
to improve the class separability in feature space and reduce
the effect of perturbation. (Mustafa et al., 2019) propose a
prototype objective function, together with multi-level deep
supervision. Their method ensures the separation in feature
space between classes and shows significant improvement
of robustness. (Pang et al., 2019) develop a strong ensem-
ble defense strategy by introducing a new regularizer to
encourage diversity among models within the ensemble sys-
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tem, which encourage the feature representation from the
same class to be close. Although these approaches avoid the
high computational cost of adversarial training, they have to
modify the network architecture or require an extra training
process, limiting the flexibility in adapting to different tasks.

2.2. Robust training for OOD test cases

When trained on IID examples, DNNs are known to fail
against test inputs that lie far away from training distribu-
tion, commonly referred to as OOD examples (Hendrycks
& Gimpel, 2016). Recent robust training for detecting ODD
test cases considers a multi-class dataset as IID (e.g., CIFAR-
10) and uses examples from another multi-class dataset as
OOD (CIFAR-100) (Liang et al., 2017; Hendrycks & Gim-
pel, 2016; Wei et al., 2020; Lee et al., 2017). Existing works
either train an OOD detector and a classifier sequentially
(Sehwag et al., 2019; Li et al., 2020c) or simultaneously
(Anonymous, 2021). For example, (Sehwag et al., 2019)
employ adversarial training on IID data as well as OOD
examples that are close to IID examples to improve learn-
ing robust features. These approaches work well for the
so-called closed-world detection where OOD examples are
either with simpler data modalities (e.g., medical images
with large shared backgrounds) or closer to IID examples
(CIFAR-10 versus CIFAR-100). Different from IID detec-
tion tasks where robust discriminative features are learned
from labeled training data, OOD detection needs to learn
high-level, task-agnostic and semantic features from the IID
dataset to detect diverse OOD inputs at the test time.

More recent OOD detection approaches are self-supervised
representation learning using only unlabeled training data,
which involves two key steps: 1) learning a good (e.g.,
compact and semantic) feature representation, and 2) mod-
eling features of ID data without requiring class labels. For
example, (Winkens et al., 2020) used contrastive training
techniques SimCLR (Chen et al., 2020b) to extract semantic
features and proposed confusion log probability to deter-
mine whether a test example is a near or far OOD example.
Using experiments, they show their approach is scalable
to high-dimensional multimodal OOD examples. (Anony-
mous, 2021) also use contrastive loss based label-free train-
ing for self-supervised feature learning followed by OOD
detection using Mahalanobis distance.

Another line of label-free feature learning approaches for
OOD detection uses flow-based generative models (e.g.,
VAEs, PixelCNNs, and Glow(Kingma & Dhariwal, 2018),
allowing for the exact formulation of the marginal likeli-
hood, to learn task-agnostic and semantic features to address
the OOD detection problem. However, even sophisticated
neural generative models trained to estimate feature den-
sity distribution (e.g., on CIFAR-10 images) can perform
poorly on OOD detection, often assigning higher proba-

bilities to OOD test examples than to IID test examples
(Nalisnick et al., 2018). Most recent research attempt to
learn task-agnostic and semantic features for both IID and
OOD images (Zhang et al., 2020; Shao et al., 2020; Nalis-
nick et al., 2019; Chen et al., 2020a), yet unique challenges
exist in learning task-agnostic and semantic representations.

2.3. Saliency guided training for enhancing DNN
interpretability

Saliency guided training has recently been shown to re-
duce noisy gradients used in predictions while retaining the
predictive performance of the model. (Ismail et al., 2021)
propose a saliency guided training by creating a new input
by masking the features with low gradient values (salience)
and encouraging the similarity between the new and original
outputs. (Uddin et al., 2020) develope a new approach that
mixes the patches and labels using the salience density to
select patches to dropout as a model regularization. (Chen
et al., 2019) propose training objectives in classic robust
optimization models to achieve robust Integrated Gradient
(IG) attributions and demonstrate comparable prediction
robustness (sometimes even better) while consistently im-
proving attribution robustness. With these existing works,
the generalizable features are expected to be learned via
designing and optimizing a new salience-guided adversarial
training objective as described below.

3. Saliency Guided Adversarial Training
Considering a classification problem on the input data
{(Xi, yi)}ni=1, a deep neural network model fθ parame-
terized by θ is trained to predict the target y. The standard
training involves minimizing the cross-entropy loss L over
the training set as follows:

min
θ

1

n

n∑
i=1

L(fθ(Xi), yi). (1)

The model parameter θ is updated via one step of gradient
descent with the learning rate α:

θ ← θ − α · 1
m

m∑
i=1

∇θL(fθ(Xi), yi), (2)

on a mini-batch of m samples {(Xi, yi)}mi=1. We denote
the gradient of the model output fθ(X) with respect to the
input X as∇Xfθ(X).

Since the standard training procedure is based on ERM
(expectation risk minimization) using stochastic gradient
descent (SGD), the gradient of model w.r.t. the input (i.e.,
∇Xfθ(X)) may fluctuate sharply via small input perturba-
tions (Smilkov et al., 2017), e.g., adversarial noise. In this
way, the model would probably learn some non-relevant fea-
tures due to some uninformative local variations in partial
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derivatives. Furthermore, (Geirhos et al., 2020) observes
that the traditional training approach introduces a nearly
ideal scenario for DNN models to learn some spurious short-
cut features, which do not exist in OOD test sets.

Building on these intuitions, we propose saliency guided
adversarial (SGA) training, a novel procedure to train the
neural network models to learn the good features by sup-
pressing non-relevant and eliminating shortcut features.

During saliency guided adversarial training, we augment the
training set by generating a new training sample for each
input sample X by masking the features with low gradient
values as follows:

X̃ = Mk(X,S(∇Xfθ(X))), (3)

where S(∇) is a function that sorts the gradient of each
feature from X in the ascending sequence. Mk(X,S(∇))
is an input mask function, which replaces the k lowest fea-
tures from X with random values within the feature range
based on the order provided by S(∇), as the non-relevant
features usually have gradient values close to zero. k is a
tuning parameter, and its selection is based on the amount
of nuisance information in a training sample. To further
eliminate the shortcut features, we generate an adversarial
example for the new sample X̃ as:

X ′ = X̃ + δ⋆, (4)

where δ⋆ is estimated as:

δ⋆ = argmax
|δ|p≤ϵ

L(fθ(X̃ + δ), y), (5)

and p can be 0, 1, 2, . . . and∞. In most cases, the perturba-
tion budget ϵ is small so that the perturbations are impercep-
tible to human eyes. In our case, the adversarial example X ′

is generated based on the masked input X̃ . Thus, X ′ does
not contain the non-relevant features but has some shortcut
features compared to the clean input X .

X ′ is then passed through the model, resulting in an out-
put fθ(X ′). In addition to the classification loss used in
the traditional training, saliency guided adversarial training
adds another regularization term that minimizes the Kull-
back–Leibler (KL) divergence between fθ(X) and fθ(X

′).
This regularization term ensures the model produces similar
output probability distributions over labels for the original
clean input X and the masked adversarial example X ′. For
this to happen, the model is ensured to learn the good fea-
tures that ensure generalization performance on OOD test
set.

The optimization problem for our saliency guided adversar-
ial training is:

min
θ

1

n

n∑
i=1

[
L(fθ(Xi), yi) + λDKL(fθ(Xi)||fθ(X ′

i))
]
,

(6)

where λ is a hyperparameter to leverage the importance of
the cross-entropy classification loss and the KL divergence
regularization term. Since this loss function is differentiable
with respect to θ, it can be optimized using existing gradient-
based optimization methods. We show the saliency guided
adversarial training procedure in Algorithm 1.

Algorithm 1 Saliency Guided Adversarial Training
Require: Training Sample X , # of features to be masked
k, attack order p, perturbation budget ϵ, learning rate τ ,
hyperparameter λ, initialized model fθ
for epochs do

for minibaches do
Create the masked input:
1. Get sorted index I for the gradient of output with
respect to the input: I = S(∇Xfθ(X))
2. Mask bottom k features of the original input:
X̃ = Mk(X, I)
Generate the adversarial example:
1. Compute δ: δ⋆ = argmax

|δ|p≤ϵ

L(fθ(X̃ + δ), y),

2. Generate the adversarial example: X ′ = X̃ + δ⋆

Compute the loss:
Li = L(fθi(X), y) + λDKL(fθi(X)||fθi(X ′))
Update θ:
θi+1 = θi − τ∇θiLi

end for
end for
Return: fθ

4. Experiments and Results
In this section, we first define IID and OOD test sets in
medical imaging domain and then explain how we built
dataset for the COVID-19 detection task. Our proposed
training approach is then evaluated qualitatively and quanti-
tatively. Finally, the ablation analysis is performed to assess
the effect of hyper-parameters.

IID and OOD test sets In machine learning, it’s typical to
randomly divide the available data into a training/validation
and test set, with the former being used to select and teach
the model to perform a particular task, and the latter being
used to check the model’s performance. One common as-
sumption is that those two datasets are drawn from the same
distribution. In relation to the training dataset, this test set is
then referred as IID data (Geirhos et al., 2020). Aside from
the IID data, recent studies (Sehwag et al., 2019) evaluate
the performance of AI systems on OOD data, which are
systematically different from the IID data with a significant
distribution shift. For example, in the medical domain, a
test set acquired from different hospitals from the training
dataset can be treated as OOD data (DeGrave et al., 2021).
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Figure 2. Examples to illustrate the features used by models to detect COVID-19+ in both IID and OOD test set. The bounding boxes in
IID test set (top row) represents radiologists’ annotated pathological features. Note we do not have similar annotations in OOD test set
(bottom row).

COVID-19 dataset We select one benchmark data set and
generate another dataset to evaluate our method for COVID-
19 detection tasks. Dataset I is from SIIM-FISABIO-RSNA
COVID-19 detection competition (Lakhani et al., 2021),
which is used as the IID data set for training, validating, and
internal testing. The dataset comprises 6334 CXR scans
that are labeled by a panel of experienced radiologists with
appearance and bounding box of COVID-19 opacities. The
Dataset I is split into training, validation, and testing sets by
a ratio of 6 : 2 : 2.

Dataset II is used for external test (OOD) only, which con-
sists of COVID-19-positive X-ray in the GitHub-COVID
repository (Cohen et al., 2020b) collected from some public
figures and other online sources with different geographic
origins. Similar to (Li et al., 2020a), we further supplement
these figures with COVID-19-negative (‘No Findings’) X-
rays from the ChestX-ray14 dataset (Wang et al., 2017),
which originate from a single hospital in the United States. It
is important to note that the samples in Dataset I may contain
COVID-19-negative CXRs from individuals with unknown
pulmonary diseases, whereas the COVID-19-negative sam-
ples in Dataset II come from healthy individuals. As a result,
the task of detecting positive COVID cases from the OOD
test set can be less challenging than from the IID test set
because the COVID negative cases in the former can be sep-
arated from COVID-19-positive cases more easily, giving
rise to an enhanced performance (as opposed to degraded
performance) in OOD test set using enhanced SGA training,

Experiment settings We use ResNet-18 (He et al., 2016)
pre-trained with ImageNet as the DNN architecture. which
is trained with the SGD optimizer for 30 epochs with a
batch size of 64. The adversarial samples X ′ are generated
by FGSM for each minibatch with a uniformly sampling
perturbation from the interval [0.01, 0.05] during the train-
ing process. The hyperparameter k and λ are fine-tuned
as 0.1 and 1 respectively. The model that achieve the best

performance on the validation set are used for IID and OOD
testing. In order to demonstrate the effectiveness of our
approach, we perform experiments comparing the perfor-
mance of our SGA with three baseline methods: natural
training (NT) with cross-entropy loss only, FGSM-based
adversarial training (AT), and saliency guided training (SG).
We show the heat map interpretations generated by FullGrad
(Srinivas & Fleuret, 2019), which highlights the most salient
regions of each CXR image that contribute mostly to the
output, to illustrate the features exploited by the pre-trained
models for COVID-19 detection.

Qualitative evaluation Figure 2 shows the heat maps gen-
erated from the models trained with four competing training
methods on two examples from IID and OOD test sets, re-
spectively. NT generates the worst heat map interpretations
on IID test set (top row) since the models seemly just learn
some non-relevant features (e.g., those corresponding to
the backbone shown in the left IID/NT panel) and/or some
shortcut features (e.g., some special tags lying on the bor-
ders shown in the right IID/NT panel). This problem is
aggravated on the OOD test set shown in the panels of the
bottom row. Although SG and AT achieve slightly better in-
terpretations than NT, SG still can not eliminate the shortcut
features and AT seems to be plagued by some non-relevant
features. On the contrary, the models trained with our SGA
trend to use the COVID-19 pathological features (within
the lungs inside the annotated bounding boxes) to detect
COVID-19 in both IID and OOD test sets. This figure indi-
cates that the regularization term added to our SGA training
objective successfully learns good features by preventing the
model from extracting shortcut and non-relevant features.

Quantitative evaluation In addition to the qualitative ex-
amples presented above, we also conduct quantitative ex-
periments to validate our SGA method and compare with
three baselines using the area under the curve (AUROC) for
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the imbalanced binary classification task. Figure 3 demon-
strates that SGA has the best average performance (0.81)
on both IID and OOD test sets compared to other base-
lines: NT (0.78), SG (0.79), AT (0.79). A more important
consideration is the performance drop from IID to OOD
test set, which indicates whether the model uses shortcut
and/or non-relevant features to make predictions. It is strik-
ing to note that the performances of AT and SGA increase
from IID to OOD test set, which indicates (1) both train-
ing schemes learn and leverage good features and (2) the
COVID prediction task on the OOD test set (Dataset II) is
less challenging since the COVID-19-negative cases are free
of lung diseases and thus comparatively more contrasting.
The model trained with NT has a significant performance
drop of 8.5%(0.82→ 0.75, 0.07/0.82), indicating that the
model trained with NT uses shortcut and/or non-relevant
features to make the prediction. This is consistent with what
we demonstrate in the qualitative evaluation section.

Figure 3. Model evaluations with receiver operating characteristic
(ROC) curves, which show the performances on both internal test
set (IID) and an external test set (OOD). The difference between
IID and OOD test set performance is the performance degrada-
tion. Only the model trained with NT has a performance drop of
8.5%(0.07/0.82) between IID and OOD test sets.

Hyper-parameter k As previously indicated, assuming
gradient-based explanation approaches interpret the model’s
predictions accurately, non-relevant features should have
small gradient values. Based on this insight, we remove
the k lowest features from the input picture X so as to
encourage the model to learn good features. Note that the
gradient value generated by saliency Map can be negative.
Higher negative values indicate that its absence contributes
to an increased score of the class. These regions might

k 0.00 0.05 0.10 0.15 0.20

IID Test 0.76 0.81 0.80 0.80 0.81
OOD Test 0.81 0.78 0.82 0.79 0.80

Difference +0.05 -0.03 +0.02 -0.01 -0.01
Average 0.79 0.80 0.81 0.79 0.80

Table 1. Ablation analysis of hyper-parameter k. Note that when
k = 0, the model is trained by AT only.

λ 0 0.5 1 1.5 2

IID Test 0.82 0.78 0.80 0.78 0.78
OOD Test 0.75 0.81 0.82 0.81 0.82

Difference -0.07 +0.03 +0.02 +0.03 +0.04
Average 0.79 0.79 0.81 0.79 0.80

Table 2. Ablation analysis of hyper-parameter λ. Note that when
λ = 0, the model is trained by NT.

be other objects in the background that cause the model
to make incorrect predictions, and masking those region
enables the model to concentrate on the foreground. As
a result, in contrast to the original paper (Simonyan et al.,
2013), which used absolute gradient values to demonstrate
the significance of features, we directly ordered the features
and eliminated the lowest k of features during training.

The selection of k depends on how much non-relevant in-
formation is in a training set. We chose small k for our
COVID-19 detection experiment because CXR images have
little and clear backgrounds. Table 1 show the result of
ablation study on the hyper-parameter k, which is tuned
from 0 to 0.2. Compared to AT, the model’s performance
increased by masking small amount of non-relevant features
and achieve the best average performance on IID and OOD
test sets when k = 0.1.

Hyper-parameter λ λ is used to balance the contributions
of NT and SGA regularization in the training objective. As
shown in Table 2, compared to NT, the models trained with
SGA have significantly better performance on OOD test set.

5. Conclusions
Existing DNN training methods can exploit non-relevant
and shortcut features for prediction, which may account
for the performance degradation on test set, particularly on
OOD test sets. To overcome this limitation, we propose a
novel saliency-guided adversarial training scheme for learn-
ing good features and empirically demonstrate its strong
performance on CXR based OOD test sets, opening a new
avenue for tackling the failure of medical imaging system
in new hospitals or on new test sets.
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