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CHAPTER 1 INTRODUCTION

Predictive modeling (a.k.a. supervised learning) is a machine learning paradigm that

learns a mapping from an input to outputs based on the historical data of input-output

pairs (i.e., feature-target). For complex and high-dimensional data, fitting supervised ma-

chine learning models with raw input features can result in severe overfitting and poor

generalization performance. This is due to that high dimensional data often has redundant

features that contains much noise. Hence, effectively capturing the useful information in

features is the key to build accurate predictive models.

In this dissertation, we develop novel methods for predictive modeling that can be cat-

egorized into (1) feature selection for high-dimensional numerical data (small n, large p)

based on generalized linear models and (2) new loss function and in-training regulariza-

tion for effective representation learning using deep neural networks (DNNs). As predic-

tive modeling is practically important and useful in many applications, we also apply DNNs

in healthcare informatics for cardiovascular disease prediction.

1.1 Feature Selection for Predictive Modeling

In the past few years, high dimensional data of small sample size, large feature size

has been proliferated from various areas. These areas include text mining, bioinformatics,

computer vision, health care and e-commerce. Due to the curse of dimensionality, tra-

ditional generalized linear models generally fail in those applications due to overfitting,

resulting poor predictive performance for unseen data. With a large number of features,

models are also difficult to interpret; yet in applications such as cancer classification, model

interpretability is a major concern. To this end, dimension reduction is often desired.

Feature selection [43] is one of the most powerful dimension reduction techniques that



2

can simultaneously address those two challenges. For example, in bioinformatics [1], the

genetic datasets consist of only a few examples with enormous expression data of thou-

sands of genes. The task is to correctly predict the cancer phenotype of patients as well as

identify the risk genes that are most correlated. Another example is the predictive mod-

eling using electronic health record (EHR) in healthcare informatics (HI) [150, 151]. In

HI, the EHR for each patient consists of different sets of features such demographic infor-

mation, lab results and disease diagnosis. Identification of the true risk factors from those

features can not only improve the predictive performance, but also help clinicians under-

stand the disease progression. Hence, feature selection is well suited in those applications.

There are various feature selection techniques developed from different perspectives,

such as information theory-based, similarity-based and statistical-based [72]. Among

them, the penalized (generalized) linear model with sparsity-inducing regularization is

one of the most popular methods, where the feature selection is incorporated into the

model optimization process. For example, Lasso [144, 31] uses l1-norm on the model pa-

rameters and achieves feature selection by forcing subset of parameters exactly to zero.

In cases that features can be grouped, group Lasso (GLasso) [96, 160] extends Lasso by

introducing the group structure and be capable of achieving sparsity at the group level. To

achieve within-group sparsity, Sparse group Lasso (SGL) [148] combines Lasso and Group

Lasso.

Part of my work also develops new models with sparsity-inducing regularizations. More

specifically, we focus on (1) the multinomial classification problem where different classes

have different important features and feature groups [80] and (2) finite mixture of regres-

sion where different mixture components may share same features as well as have its own
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important features [78].

1.2 Representation Learning for Predictive Modeling

Deep neural networks (DNNs) have achieved great success for difficult predictive tasks

in speech recognition, computer vision and healthcare informatics [12, 68, 103, 14]. This

is due to DNN’s capability of learning high-level feature representations, rendering better

predictions based on those abstract features. As DNNs for supervised learning can be

viewed as a pipeline of a feature extractor (i.e., the last hidder layer) and an output layer

(i.e., regressor for regression, classier for classification), the effectiveness of the feature

extractor is critical for DNN’s predictive performance.

Modern architectures of DNNs usually have an extremely large number of model pa-

rameters, which often outnumbers the available training data. Recent studies in theoretical

deep learning have shown that DNNs can achieve good generalization even with the over-

parameterization [102, 106]. Although over-parameterization may not be very damaging

to DNN’s overall generalizability, DNNs can still overfit the noise within the training data

(e.g., sampling noise in data collection) due to its highly expressive power. This makes

DNNs sensitive to small perturbations in testing data, for example, adversarial samples

[38, 79, 77]. To alleviate overfitting of DNNs and learn better feature representations,

many regularization methods have been proposed. These include classic ones such as

early stopping, L1 and L2 regularization [37], and more recent ones such as dropout [131],

batch normalization [58] and data-augmentation types of regularization (e.g., cutout [23],

shake-shake [34]). There are also other machine learning regimes that can achieve regu-

larization effect such as transfer learning [107] and multi-task learning [6, 123].

In addition to the regularization approach, another line of research focuses on design-
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ing new loss functions to learn feature representation with more discriminative power. For

predictive modeling, DNNs are usually trained with the loss functions of supervision (e.g.,

cross-entropy loss). In the training process, model learning is only supervised by the signal

of loss functions and does not impose restrictions on the distribution of feature represen-

tations. To this end, the performance of DNNs can be further boosted by learning features

with large inter-class separability and strong intra-class compactness. For example, [154]

proposes the center loss that encourages the clustering effect for each class. [11] designs a

virtual loss that inserts virtual class between each pair of true classes so that the inter-class

separability is maximized. In [88], an angular margin is imposed to increase inter-class

separability in terms of cosine distance.

One of our work [75] designs a new loss function which is originally motivated in

exploring the property of the logistic and softmax loss functions. It can enhance the dis-

criminative power of feature representations learned by DNN. Another work [76] proposes

a regularization method that is embedded in stochastic gradient descent (SGD) procedure

to reduce the adaption of model parameters to mini-batches.

1.3 Contribution

In this section, we describe our contributions of this dissertation as follows.

1.3.1 Feature Selection in Generalized Linear Models

For multinomial classification A regularized multinomial logistic model, termed as

class-conditional sparse overlapping group lasso (CCSOGL), is proposed. In CCSOGL, we

incorporate information of feature groups in CCSOGL in the class-conditional fashion. This

flexibility makes CCSOGL capable of achieving class-specific sparsity pattern at the group

level and further selecting relevant features within the selected feature group, which fits
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many applications well and enhances model performances and interpretability. To solve

the optimization problem, we develop a block coordinate descent algorithm that solves

CCSOGL efficiently.

For mixture of gaussian regression We propose a novel penalized finite mixture of

Gaussian regression model with structured feature selection that explicitly incorporates the

information of parameter grouping via matrix l2,1-norm. The l2,1 penalty has one appealing

property that it performs feature selection at the (parameter) group level, encouraging the

same sparsity pattern across all mixture components. Our approach is more robust to noisy

features and model noise as demonstrated in simulation studies. We further extend l2,1 to

flexible sparse l2,1 penalty by incorporating l1-norm. The sparse l2,1 penalized FMR allows

heterogeneous feature structures across mixture components while possesses robustness

of l2,1 penalty.

The resultant penalized MLE in FMR is formulated as a non-convex optimization prob-

lem. The standard approach for penalized FMR is EM-type algorithm; the non-smoothness

of sparse l2,1 penalty, however, poses substantial challenges in the M-step of EM algorithm.

Inspired by a re-parametrization trick in [132], we combine block coordinate descent algo-

rithm and majorizing-minimization scheme for numerical optimization in the M-step, with

efficient closed-form updates in each iteration. Finally, we apply our method to evaluate

its performance using simulation and real data sets.

1.3.2 Predictive Modeling for Healthcare Informatics

Cardiovascular disease prediction Two DNN models are developed for risk quantifi-

cation in healthcare informatics.

We propose the auxiliary-task augmented network (ATAN), a model that predicts the
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risk of cardiovascular disease with introducing clinically relevant measures as auxiliary

predictive tasks. With auxiliary tasks, ATAN takes advantage of multi-task learning (MTL)

— an approach of regularization and implicit data augmentation. Without assumption of

homogeneous feature representation for all tasks in classic multi-task frameworks, ATAN

explicitly models the shared feature representation for all tasks, as well as task-specific

representation, and combines them together using a weighting mechanism to capture the

clinical relevance. By the weighting mechanism, we conceptually quantify the relevance

between the primary and auxiliary target.

We also introduce a unified DNN model, termed as deep mixture of neural networks

(DMNN), that simultaneously predicts clinical outcomes and discover patient subgroups.

DMNN consists of an embedding network with gating (ENG) and several local predictive

networks (LPNs). ENG embeds raw input features into high-level feature representation

that is further used as input for LPNs. Unlike the existing DNN models without subgroup

identification, patients will be grouped that share similar functional relations between

inputs and clinical outcomes via the gating mechanism of ENG. Each functional relation is

modeled by one LPN. The subgroup discoveries enable us to apply existing interpretation

techniques to identify subgroup-specific risk factors. By explaining the local input-outcome

relations captured by LPN within each patient subgroup, the subgroup-specific sets of risk

factors enable us to discover health disparities.

1.3.3 Effective Feature Learning of DNNs

In-negative-class reweighted logistic loss for DNNs For logistic loss (LGL)and soft-

max loss (SML), we provide a theoretical derivation on the relation of model predicted

probability, class weights in the loss function and sample sizes in a system of equations.
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We depict the learning property for LGL and SML for classification problems based on

those probability equations. The multi-modality neglect problem in LGL is then identified

which is the main obstacle for LGL’s application in multi-class classification. To remedy

this problem, we propose a novel learning objective, in-negative class reweighted LGL, as

a competitive alternative for LGL and SML for multi-class classification.

Learning compact features via in-training representation alignment We propose a

training strategy in-training feature alignment (ITRA) for training DNNs. ITRA augments

conventional SGD with regularization by additionally forcing feature alignment of differ-

ent mini-batches using maximum mean discrepancy (MMD) to reduce mini-batch over-

adaption. We show in in-depth analysis that ITRA enjoys three theoretical merits that can

improve the feature learning of DNNs: (1) learning compact feature representations; (2)

reducing over-adaption to mini-batches; (3) accommodating multi-modalities of the data

distribution. ITRA can be combined with existing regularization approaches and applied

on a broad range of network architectures and loss functions.

1.4 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we introduce the

CCSOGL method for multi-class logistic regression. In Chapter 3, we describe the robust

feature selection using l2,1-norm for finite mixture of Gaussian regression. In Chapter 4,

we apply DNNs under the framework of multi-task learning and mixture model for disease

risk prediction. In Chapter 5, we derive the learning property of logistic and softmax

losses for deep neural network and further propose an improved version of logistic loss for

classification. Chapter 6 introduces a new training strategy that acts as a regularization

method for training DNNs. Finally, Chapter 7 concludes this dissertation with discussion.
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CHAPTER 2 FEATURE SELECTION FOR MULTINOMIAL CLASSIFICATION

Regularized multinomial logistic model is widely used in multi-class classification prob-

lems. For high dimension data, various regularization methods achieving sparsity have

been developed and applied successfully to many real-world applications such as bioinfor-

matics, health informatics and text mining. In many cases there exists intrinsic group struc-

tures among the features, incorporating the group information in the model can enhance

model performance. In multi-class classification, different classes may relate to different

feature groups. With these considerations, we propose a class-conditional regularization

of the multinomial logistic model (CCSOGL) to enable the discovery of class-specific fea-

ture groups. To solve the model, we developed an efficient cyclic block coordinate descent

based algorithm.

2.1 Introduction

Multinomial logistic regression is one of the most popular discriminative methods for

multi-class classification problems. It directly models the probabilities of a sample be-

longing to each class. The typical approach for model training is to maximize likelihood

function, which usually requires more samples than features. Otherwise the models may

be overfitted and are of high variances. In many modern applications such as multi-type

cancer and document classification, this condition is often not satisfied as there have more

features than samples in the data. A lot more parameters need to be learned as one feature

corresponds to multiple parameters across multiple classes, resulting in a more complex

model training and possible overfitting.

To overcome this situation, feature selection, which in many applications is of great

value itself and makes the model more interpretable, has attracted much interest from the
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research community. Various sparsity-inducing regularization methods have been devel-

oped and achieved great success in analyzing high dimensional data.

In applications such as cancer and text classification, prior knowledge is often available

that there exists some intrinsic group structures among the features. As the structure

of feature groups is known, incorporating this information in building a sparsity-inducing

model could potentially not only lead to better models but also achieve sparsity on a larger

scale. While it might be too restrictive to assume that all classes share the same structure of

features, it is more reasonable to allow the class-specific structures of features and feature

groups vary across classes. Moreover, as we are motivated by many real-world problems,

including all features from the chosen groups in the model might overfit the model as well

thereby within-group sparsity is desired.

To further motivate our work, we briefly discuss two exemplar applications in cancer

and text classification. In cancer classification, genes are grouped into overlapping gene

sets (pathways). Different cancers are regulated by different pathways, and within each

pathway are regulated by a subset of genes [87, 108]. For another example, in document

classification, different document classes are related to different topics, and each topic is

represented by a set of different keywords. Successful identification of the relevant feature

groups and features within each group is crucial for this classification task.

In this chapter, we propose a regularized multinomial logistic model, called class-

conditional sparse overlapping group lasso (CCSOGL), to specifically incorporate the con-

siderations in motivation. Our CCSOGL formulation has several contributions to the field:

• We incorporate information of feature groups in CCSOGL in the class-conditional
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fashion. This flexibility makes CCSOGL capable of achieving class-specific spar-

sity pattern at the group level and further selecting relevant features within the

group, which fits many applications well and enhances model performances and

interpretability.

• We present a block coordinate descent algorithm solving CCSOGL efficiently.

• We evaluate the effectiveness and robustness of CCSOGL with benchmark datasets

and compare CCSOGL with other state-of-art sparsity-inducing methods for multino-

mial classification.

2.2 Related Work

Lasso [144] and its variants [31] are among the regularization methods that induce

sparsity. In cases that features are grouped according to prior knowledge, group Lasso

(GLasso) [96, 160] extends Lasso by introducing the group structure and be capable of

achieving sparsity at the group level. Sparse group Lasso (SGL) [148] develops group Lasso

and further introduces within-group sparsity: it first selects feature groups; then within

the selected groups, it selects features. To handle overlapping feature groups, overlapping

group Lasso (OGL) [59] and sparse overlapping group Lasso (SOGL) [120] are proposed

using feature duplication. Lasso, GLasso and SGL, first developed in regression and binary

logistic model, were later generalized to the multinomial problem [128, 129, 148]. In

the GLasso multinomial model, under the implicit assumption that all classes are related

to the same set of features, parameter coefficients corresponding to the same feature are

grouped. (That is, in multinomial GLasso, coefficients are grouped without the need of

prior knowledge.) Multinomial SGL likewise achieves within group sparsity in addition to
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group sparsity.

Figure 1 presents an illustrative example of sparsity pattern induced by different reg-

ularization methods, including (a)Lasso, (b)GLasso and (c)SGL and our new methods

(d)CCOGL and (e)CCSOGL (Panel (d) is a special case of (e) in our formulation. See Sec-

tion 2.3.2). In this figure, each heat-map represents a parameter coefficient matrix with

each row corresponding to one feature and each column to one class; the small cyan rect-

angles represent the selected features. In panel (d), each long vertical rectangle in one

class represents selected feature groups specific to that class (class-specific topics in text

classification or pathways in cancer classification). Panel (e) extends (d) by selecting fea-

tures within selected groups. The sparsity pattern in panel (e) is often of primary interest

in real-world problems as in the motivation described above. Note that Panel (d) and (e)

show sparsity patterns, at the feature group level, different from (b) and (c) (“vertical"

vs. “horizontal"). In (d) and (e), CCOGL and CCSOGL explicitly uses prior knowledge

about feature groups (for example, pathways in cancer) and allows group structures vary-

ing across all classes. In contrast, Panel (b) GLasso and (c) SGL do not use the prior

knowledge and implicitly assume all classes relate to features from a same feature set.

2.3 Methods

Let {(xi, yi)}ni=1 represent the set of n samples, where xi ∈ RP is the P -dimensional

input vector of features for the i-th sample, and yi is the output. The design matrix X is

organized as an n×P matrix. We first introduce the sparse overlapping group lasso (SOGL)

in linear and binary logit model [120] and then formulate our CCSOGL as a penalty in the

multinomial logistic regression.
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Figure 1: An illustrative example: sparsity pattern of coefficient matrix induced by differ-
ent methods: (a) Lasso. (b) group lasso : coefficients corresponding to the same feature
being grouped. (c) sparse group lasso, extending (b) by introducing within-group spar-
sity. (d) CCOGL and (e) CCSOGL represent our main contributions in this chapter. In (d),
coefficients are grouped class-wise according to predefined (possibly overlapping) feature
groups. (e) is an extension of (d), introducing within-group sparsity.

2.3.1 Sparse Overlapping Group Lasso.

Suppose that there is a group structureG = {G1, · · · , GJ} among P features {f1, · · · , fP}

that each feature fp (1 ≤ p ≤ P ) is assigned to at least one group Gj (1 ≤ j ≤ J). In linear

regression and binary classification, let β0 and β = (β1, · · · , βP )T denote the intercept and

coefficient vector respectively.

The key idea of SOGL [120] is to decompose the coefficient vector β into a sum of

group-support vectors, denoted by ωβ = {ω1, · · · , ωJ :
∑J

j=1 ω
j = β} ⊂ RP . Each support

vector ωj satisfies a property that if fp ∈ Gj, ωjp ∈ R, otherwise ωjp = 0. For instance, in

a simple case of 4 features {f1, f2, f3, f4} and 3 groups G1 = {f1, f3, f4}, G2 = {f1, f2},
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G3 = {f2, f4}, β is decomposed as a sum of three group-support vectors:

β = ω1 + ω2 + ω3

G1 :ω1 = (ω1
1, 0, ω

1
3, ω

1
4)T

G2 :ω2 = (ω2
1, ω

2
2, 0, 0)T

G3 :ω3 = (0, ω3
2, 0, ω

3
4)T .

Based on this decomposition, the sparse overlapping group lasso is defined as

g(β) = inf
ωβ

J∑
j=1

(
a||ωj||1 + b||ωj||2

)
, (2.1)

where a > 0 and b ≥ 0 determine the trade-off between l1 and l2 norm. One key property

of g(β) is that it is a norm (Lemma 4.1 in [120]), meaning that SOGL penalized linear and

binary logit model are convex programs:

min
β0,β

E(β0, Xβ) + λg(β), (2.2)

where E(β0, β) is the square loss in linear regression or negative log-likelihood in binary

logit model, λ is the tuning parameter.
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2.3.2 CCSOGL Classifier.

In the multi-classification problem of K classes, multinomial logistic regression models

using softmax function calculate probabilities of multiple class memberships as below:

P (y = k|x) =
exp(gk(x))∑K
l=1 exp(gl(x))

k = 1, · · · , K, (2.3)

where gk(x) = βk0+xβk, βk = (βk1, · · · , βkP )T ∈ RP . The model parameters are represented

by a pair (β0, β) with β = (β11, · · · , β1P ; · · · ; βK1, · · · , βKP ) ∈ RKP , β0 = (β10, · · · , βK0). We

say βk is the k-th vector component of β.

For n samples (x1, y1), · · · , (xn, yn), the output yi = k is encoded as (yi1, · · · , yiK) with

yik = 1 and yih = 0 for h 6= k, and we write pik = P (yi = k|xi). The (scaled) negative

log-likelihood function is:

L(β0, β) =− 1

n

n∑
i=1

K∑
k=1

yik · ln pik

=− 1

n

n∑
i=1

[ K∑
k=1

yik(βk0 + xiβk)− ln
K∑
l=1

exp(βl0 + xiβl)
]
.

(2.4)

In high dimension problems (P � n), the (unregularized) maximum likelihood ap-

proach can lead to severe overfitting. Regularization of features is a popular choice to

identify a small number of significant features for model interpretation and improvement

of prediction stability. When the feature grouping information is available, along with

the consideration that features and groups of features may vary across response classes,

we formulate a new sparsity-pursuit penalty “class-conditional sparse overlapping group

lasso" (CCSOGL).
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Suppose that G = {G1, · · · , GJ} is the group structure among features {f1, · · · , fP}, the

coefficient vector β is, based on G, decomposed as a sum of class-dependent group support

vectors ωβ = {ωjk ∈ RKP : 1 ≤ j ≤ J, 1 ≤ k ≤ K, β =
∑J

j=1 ω
j
k}. Each ωjk = (ωjk,1; · · · ;ωjk,K),

where ωjk,h ∈ RP for 1 ≤ h ≤ K is the h-th vector component of ωjk, has the following

property: (i) For h 6= k, ωjk,h = 0; (ii) The k-th vector component ωjk,k of ωjk is a support

vector of βk for group Gj as in SOGL.

In other words, for the k-th class,

βk =
J∑
j=1

ωjk,k, 1 ≤ k ≤ K. (2.5)

Based on this decomposition, CCSOGL is defined as:

h(β) = inf
ωβ

J∑
j=1

K∑
k=1

(α||ωjk||1 + (1− α)
√
dj||ωjk||2), (2.6)

where 0 ≤ α < 1 controls tradeoff between l1 and l2 norm, dj is the size of the j-th group

Gj.

Lemma 2.1. h(β) is a norm. In particular, h(β) is convex.

Proof. See supplemental material.

The CCSOGL estimator is given by the convex optimization problem:

min
β0,β

L(β0, β) + λh(β). (2.7)
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2.3.3 Optimization Algorithm for Solving CCSOGL

Instead of solving the optimization problem (2.7), we use “feature duplication" method

as in [59], [120] to reduce it to a non-overlapping convex problem in the expanded feature

space:

min
β0,ωβ

S(β0, ωβ) := L(β0, ωβ) + λ

J∑
j=1

K∑
k=1

(
α||ωjk||1 + (1− α)

√
dj||ωjk||2

)
, (2.8)

where, with a slight abuse of notation, L(β0, ωβ) represents L(β0, β) with β being substi-

tuted by ωβ according to β =
∑

k,j ω
j
k. Feature duplication can be seen by noticing for

each vector component βk of β, Xβk = X
∑J

j=1 ω
j
k,k. For notational convenience, in the

following section, we drop out those zero components in the support vector ωjk as they

don’t affect the objective function (and hence ωjk ∈ Rdj). We also assume that overlapping

features of each sample xi have already been duplicated. Furthermore, we use xji ∈ Rdj to

represent the sub-vector of the i-th sample xi such that each component of xji corresponds

to the feature in th j-th group Gj respectively.

Problem (2.8) is a convex program, and the penalty term is block separable [145]:

Ω(ωβ) =
J∑
j=1

K∑
k=1

(α||ωjk||1 + (1− α)
√
dj||ωjk||2) =

J∑
j=1

K∑
k=1

Ωj
k(ω

j
k), (2.9)

where Ωj
k(ω

j
k) = α||ωjk||1 + (1 − α)

√
dj||ωjk||2. This implies that the block coordinate de-

scent algorithm ([145], [156]) is well suited for this problem. In the algorithm, we cycle

through the parameter blocks and each iteration minimizes a subproblem keeping all but

the currently chosen parameter block fixed. In the following description of the algorithm,
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(β̃0, ω̃β) = {β̃k0, ω̃
j
k : 1 ≤ k ≤ K, 1 ≤ j ≤ J} represents the numeric values learned in the

previous update; L(βk0) represents L(β0, ωβ) as a function of βk0 with all coefficients being

assigned with the current values except βk0; L(ωjk), S(βk0) and S(ωjk) are similar.

In the minimization for βk0 (1 ≤ k ≤ K), as it is not penalized, we update βk0 using the

Newton-Raphson formula:

β̃k0 ← β̃k0 −
L′k0

L′′k0

, (2.10)

where L′k0 = 1
n

∑n
i=1(p̃ik − yik), L′′k0 = 1

n

∑n
i=1 p̃ik(1 − p̃ik), p̃ik is the probability calculated

by (2.3) at the current value (β̃0, ω̃β), L′k0 and L′′k0 denote the derivative of 1-st and 2-nd

order of L(βk0) respectively. With a proper initialization, the Newton method converges.

In updating the block ωjk (1 ≤ k ≤ K, 1 ≤ j ≤ J) with other blocks holding fixed, an

optimization subproblem is constructed in which the objective function Q(ωjk) : Rdj → R

is a sum of what is called the “majorizing function" M(ωjk) of L(ωjk) and the corresponding

penalty block λΩj
k plus a constant.

More specifically,

M(ωjk) = L(β̃0, ω̃β) + (ωjk − ω̃
j
k)
T∇j

kL(β̃0, ω̃β) +
1

2t
||ωjk − ω̃

j
k||

2
2, (2.11)

Q(ωjk) = M(ωjk) + λΩj
k(ω

j
k) + λC, (2.12)

ω̃jk ← arg min
ωjk

Q(ωjk), (2.13)

where ∇j
kL = ∂L

∂ωjk
= 1

n

∑n
i=1(pik − yik)xjTi , t is a properly selected constant, C = Ω(ω̃β) −

Ωj
k(ω̃

j
k). The majorizing functionM(ωjk) comes from the "majorize-minimization" algorithm

[56] with a nice property that if t is chosen small enough, the third term 1
2t
||ωjk − ω̃jk||22
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will dominate the Hessian term in the Taylor expansion of L(ωjk). As a consequence, the

following inequality holds for all ωjk ∈ Rdj :

L(ωjk) ≤M(ωjk). (2.14)

Adding the penalty term on M(ωjk) leads to a majorizing function Q(ωjk) for the objective

S(ωjk) in (2.8). That is, for all ωjk ∈ Rdj ,

S(ωjk) ≤ Q(ωjk). (2.15)

Lemma 2.2. Cyclic block coordinate descent algorithm for CCSOGL converges.

Proof. See supplemental material.

By completing the square in M(ωjk), minimizing Q(ωjk) is equivalent to minimizing:

R(ωjk) =
1

2λt
||ωjk − [ω̃jk − t∇

j
kL(β̃0, ω̃β)]||22 + Ωj

k(ω
j
k). (2.16)

Note that R(ωjk) is strictly convex, so the optimal minimizer is characterized by the first

order condition [100]. This results in the following lemma:

Lemma 2.3. The minimizer ωj?k for (2.16) is given by the following update rule:

if ||Tα(
ω̃jk − t∇

j
kL(β̃0, ω̃β)

λt
)||2 ≤ (1− α)

√
dj, ω

j?
k = 0,

if ||Tα(
ω̃jk − t∇

j
kL(β̃0, ω̃β)

λt
)||2 > (1− α)

√
dj,

ωj?k =
[
1−

(1− α)
√
djλt

||Tαλt(ω̃jk − t∇
j
kL(β̃0, ω̃β))||2

]
· Tαλt(ω̃jk − t∇

j
kL(β̃0, ω̃β)), (2.17)
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Algorithm 1 Cyclic Block Coordinate Descent for CCSOGL
1: Initialize (β0, ωβ)
2: repeat
3: for k = 1 to K
4: βk0 ← arg minL(βk0), using Newton-Raphson formula (2.10)
5: for j = 1 to J

6: if ||Tα(
ω̃jk − t∇

j
kL(β̃0, ω̃β)

λt
)||2 ≤ (1− α)

√
dj

7: ω̃jk ← 0
8: else

9: ω̃jk ←
[
1−

(1− α)
√
djλt

||Tαλt(ω̃jk − t∇
j
kL(β̃0, ω̃β))||2

]
·Tαλt(ω̃jk − t∇

j
kL(β̃0, ω̃β))

10: until converge

where Tv(x) =
(
S(x1, v), · · · , S(xdj , v)

)
(x ∈ Rdj) and S(u, v) = sign(u) max{|u| − v, 0}

(u ∈ R, v ≥ 0) is the soft-thresholding operator.

Proof. See supplemental material.

From Lemma 2.3, we see that our CCSOGL model first select feature groups; within

the selected feature groups, CCSOGL performs feature selection. As feature groups are

selected class-wise, CCSOGL can indeed achieve the sparsity pattern shown in Panel (e) of

Figure 1.

Integrating all of above leads to Algorithm 1 for solving our CCSOGL penalized multi-

nomial logistic model.

2.4 Application

In this section, we evaluate and validate our method and compare its performance with

selected competing classification methods using several publicly available datasets. Tested

methods include Lasso, GLasso, l1-regularized l2-loss SVM and CCSOGL. The Lasso and

GLasso were implemented using the R package glmnet [31]. L1-regularized SVM (L2-loss)

was implemented in R package LiblineaR. The CCSOGL was implemented in C++ in house
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interfacing with R through the R package Rcpp and RcppArmadillo [27].

2.4.1 Data Description.

We first used three gene expression datasets to evaluate CCSOGL. The details of datasets

are as follows:

• NCI-60 contains gene expression levels from 60 cell lines with 9 different types of

cancer: 6 leukemia, 8 melanoma, 9 non-small-cell lung carcinoma, 7 colon, 6 central

nervous system, 8 renal, 8 breast, 2 prostate and 6 ovarian. We removed samples of

prostate cancer due to very small class size, resulting in 58 samples from 8 classes

remain in analysis. More details for NCI60 can be found in [133]. The dataset is

available from http://www.broadinstitute.org/mpr/NCI60/.

• Brain Cancer consists of gene expression profiles from 42 patients with different brain

cancer types of the central nervous system. The samples are divided into 5 classes:

8 primitive neuroectodermal tumors (PNET), 10 atypical teratoid/rhabdoid tumors

(AT/RT), 10 medulloblastomas, 10 malignant gliomas and 4 human cerebella. See

[113] for more information. The data can be downloaded from http://www.broadinstitute.org

/mpr/publications/pro- jects/CNS/.

• Breast Cancer Subclass contains gene expression values for 198 samples in 5 breast

cancer subclasses: 30 basal-like, 11 HER2, 64 luminal A, 90 luminal B and 3 normal

breast-like. 3 samples with normal breast-like were removed from analysis. More

background information is available in [21]. This dataset can be downloaded form

the Gene Expression Omnibus with accession number GSE7390.

Datasets were preprocessed before analysis. We used gene set collections from MSigDB
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Table 1: Summary of datasets used in our analysis. In the table, K,n, p and J represent
number of classes, number of samples, number of features and number of feature sets,
respectively; “Collection" represents the gene set collection used from MSigDB.

Dataset K n p J Collection
NCI60 8 58 2654 103 C4 CM
Brain 5 42 2035 111 C5
Breast 4 195 3582 43 C6

database [135] as our predefined feature groups in CCSOGL. Not all gene sets in one

collection were used in our analysis. We first applied Gene Set Enrichment Analysis (GSEA)

[135] to filter out irrelevant gene sets using a cutoff of p-value≥ 5%. Using irrelevant gene

sets will introduce too much noise in our model. Further, genes in the raw data that are

not present in the selected gene sets were removed from our analysis. Expression values

for each gene were normalized using x′ = (x −min(x))/(max(x) −min(x)) for numerical

convenience. Table 1 provides details of datasets used in our experiments.

2.4.2 Performance Evaluation.

Performances of different sparsity-induced methods were evaluated following the con-

ventional way of performing external cross-validation as done in the closely related works

in literature, such as [119, 148]. Since classes in the used datasets are unbalanced,

solely estimating prediction errors favors models with better predictive performances on

the dominant classes and may obscure model predictive behaviors. Hence, in addition to

estimating prediction errors, macro F1-score, treating each class equally regardless of sam-

ple size, was also used. To obtain stable estimated prediction errors as well as calculate

macro F1-scores, we used (stratified) 4-fold cross-validation and repeated this procedure

10 times.

We first estimated prediction error with cross-validation error (CVE). Table 2 reports the
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4-fold cross validation errors for different models. We see that the CCSOGL outperforms

Lasso and group Lasso (GLasso) due to incorporation of feature group information. In

the multi-cancer classification problem, it is translated into the assumption that different

cancers are regulated by different genes and pathways. To further validate performance of

CCSOGL, we performed one-sided two sample t-test on the cross-validation error between

CCSOGL and each of Lasso, GLasso and SVM: H0 : CVECCSOGL = CVEother vs. H1 : CVECCSOGL <

CVEother. Table 3 provides the resultant statistics for three datasets, showing significantly

that CCSOGL performs better than other models. Incorporating the prior knowledge about

feature groups and allowing class-specific dependencies of features and feature groups in

building the models indeed improve the classifier performance as demonstrated by the

experiments.

Table 2: Average of 4-fold cross validation error (CVE) for different methods over 10 runs
(along with their standard deviations). The best performance is bold faced.

Dataset Lasso GLasso SVM CCSOGL

NCI60 0.448 0.398 0.461 0.384
(0.042) (0.027) (0.024) (0.031)

Brain 0.262 0.246 0.217 0.175
(0.036) (0.043) (0.046) (0.033)

Breast 0.243 0.236 0.240 0.205
(0.021) (0.019) (0.018) (0.013)

Table 3: p-values (along with t statistics) on cross-validation error (CVE) for one-sided two
sample t-test H0: CVE of CCSOGL = CVE of other method vs. H1: CVE of CCSOGL < CVE
of other method.

CCSOGL vs. Lasso GLasso SVM
NCI60 ≤ 0.001∗ 0.138 ≤ 0.001∗

Brain ≤ 0.001∗ ≤ 0.001∗ 0.016∗

Breast ≤ 0.001∗ ≤ 0.001∗ ≤ 0.001∗

We also used the 4-fold macro F1-score as an evaluation metric for each method. In

multi-class classification, macro F1-score [147] is a performance measurement for classi-
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fiers that is calculated the average of per-class F1-scores. F1-score is the harmonic mean of

precision and recall for each classification, i.e., F1 = 2× precision×recall
precision+recall , where precision is the

ratio of samples which are classified as positive are correct and recall is the ratio of positive

samples that are correctly classified. Here, we calculated the 4-fold macro F1-score as the

average of the macro F1-scores in the 4-fold cross validation (one F1-score for each fold).

Again, we reported the average of cross validation macro F1-scores over the 10 runs.

Macro F1-score weighs prediction performance for each class equally. Hence, macro F1-

score will not be dominated by performances of classifiers on classes with larger sample

size, yet be sensitive for performances on classes with smaller sample size. This implies that

macro F1-score provides more insights for model evaluation, especially for applications in

unbalanced data. As we report average of macro F1-score on multiple runs, models with

less variance of macro F1-score indicate more consistency and robustness.

Table 4 presents average of 4-fold cross validation macro F1-scores (along with stan-

dard deviations) for different methods on 10 repetitions. As shown in the table, CCSOGL

enjoys the smallest variance for three datasets without compromising macro F1-scores,

indicating a more robust performance over the competing methods.

Table 4: Average of 4-fold macro F1-score for different methods over 10 runs (along with
their standard deviations). Smallest standard deviation is starred and highest macro F1-
score is bold faced.

Dataset Lasso GLasso SVM CCSOGL

NCI60 0.508 0.558 0.485 0.565
(0.042) (0.038) (0.035) (0.030)∗

Brain 0.710 0.699 0.749 0.782
(0.050) (0.051) (0.037) (0.027)∗

Breast 0.622 0.622 0.639 0.623
(0.040) (0.029) (0.031) (0.009)∗
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Table 5: Results for class-specific feature group selection: number of selected groups for
each class, number of selected groups unique to each class and proportion of the selected
groups among all groups.

Dataset NCI60 Brain Breast
# Group {8,7,4,6,3,6,4,7} {6,6,5,1,8} {3,10,3,8}
# Unique {7,3,1,4,1,4,3,4} {2,2,3,1,3} {2,4,0,3}
Proportion 0.35 0.16 0.37

2.4.3 Class-specific Feature Group Selection

CCSOGL incorporates heterogeneous structures of feature groups across classes as de-

scribed in the motivation. The incorporation brings CCSOGL an advantage over other

competing method that CCSOGL is able to achieve class-specific sparsity at group level.

Table 5 provides results of CCSOGL for class-wise selecting feature groups. We chose

tuning parameters from 4-fold cross-validation and then trained model on the entire datasets.

Selected feature groups are obtained form the trained CCSOGL model. From the table, we

see that CCSOGL not only achieves group selection, but also uncovers different sparsity

pattern across classes: some feature groups are identified that are unique to each class

while some feature groups are shared by several classes. This flexibility in group selection

for CCSOGL makes the selected model much easier to interpret.

2.5 Conclusion

In this chapter, we have proposed a regularized method so-called CCSOGL for multino-

mial logistic regression and compared the performance of CCSOGL with other state-of-art

sparsity-inducing methods on several benchmark datasets. The CCSOGL method can per-

form class-dependent selection of feature groups and features to achieve a superior perfor-

mance in multinomial classification. This flexibility of CCSOGL not only increases predic-

tive accuracy and model robustness, but also potentially discovers the functional feature
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groups in the classification, which may provides insight on the related field. Our model is

efficiently and accurately solved by the cyclic block coordinate descent algorithm. Future

development includes generalization of our methods to accommodate multiple types of

features and extension to classification problems with ordinal class labels.



26

CHAPTER 3 FEATURE SELECTION FOR FINITE MIXTURE OF REGRESSION

Finite mixture of Gaussian regression (FMR) is a widely-used modeling technique in

supervised learning problems. In cases where the number of features is large, feature

selection is desirable to enhance model interpretability and to avoid overfitting. In this

chapter, we propose a robust feature selection method via l2,1-norm penalized maximum

likelihood estimation (MLE) in FMR, with extension to sparse l2,1 penalty by combining

l1-norm with l2,1-norm for increasing flexibility. To solve the non-convex and non-smooth

problem of (sparse) penalized MLE in FMR, we develop an new EM-based algorithm for

numerical optimization, with combination of block coordinate descent and majorizing-

minimization scheme in M-step. We finally apply our method in six simulations and one

real dataset to demonstrate its superior performance.

3.1 Introduction

Finite mixture of regression (FMR) is a flexible modeling technique for supervised

learning problems. It extends uni-modal assumption of Generalized Linear Model (GLM)

to multi-modal cases. This method is widely used in various applications such as biology,

economics, and engineering [25, 50, 66]. Among these applications, many problems arise

with high dimensionality yet the sample size is relatively small. Fitting FMR directly with

maximum likelihood approach not only results in severe overfitting and poor generaliza-

tion performance, but also makes the model hard to interpret. One viable approach to

address those two issues, i.e., variance reduction and feature selection, is to fit FMR with

sparsity-inducing penalty.

Various sparsity-inducing methods in GLM were extensively developed and successfully

applied to classification and uni-modal regression problems. [144, 160, 96, 59, 120]. How-
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ever, it is not the case for multi-modal regression problems, especially in high dimension.

Initial works by [65, 132] applied Lasso-typed (l1-norm of model parameters) methods to

finite mixture of Gaussian regression. l1 penalty is capable of finding heterogeneous feature

structure across mixture components. In FMR models, parameters of features are naturally

structured, i.e., multiple parameters (one parameter from each mixture component) corre-

sponding to one feature are grouped. The l1 penalty, however, performs feature selection

for each mixture component individually, hence it misses the similarity and relatedness

among different mixture components. As we may expect that different mixture compo-

nents of FMR share some common features, incorporating the group structure in modeling

is beneficial. To this end, we seek a method that utilizes the grouping information in FMR

as well as enjoy the flexibility of allowing features to be component-dependent.

We propose a novel penalized finite mixture of Gaussian regression model with struc-

tured feature selection that explicitly incorporates the information of parameter grouping

via l2,1-norm. l2,1 penalty has one appealing property that it performs feature selection

at the (parameter) group level, encouraging the same sparsity pattern across all mixture

components. Our approach is more robust to noisy features and model noise as demon-

strated in simulation studies. Moreover, we further extend l2,1 to flexible sparse l2,1 penalty

by combing with l1-norm. With incorporation of l1-norm, sparse l2,1 penalized FMR allows

heterogeneous feature structures across mixture components while possesses robustness

of l2,1 penalty.

The resultant penalized MLE in FMR is formulated as a non-convex optimization prob-

lem. The standard approach for penalized FMR is EM-type algorithm; the non-smoothness

of sparse l2,1 penalty, however, poses substantial challenges in the M-step of EM algorithm.
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Inspired by a re-parametrization trick in [132], we combine block coordinate descent algo-

rithm and majorizing-minimization scheme for numerical optimization in the M-step, with

efficient closed-form updates in each iteration. Finally, we apply our method to evaluate

its performance using simulation and real data sets.

3.2 Related Work

Finite mixture of regression models can be viewed as an extension of Generalized Lin-

ear Model (GLM) and have been extensively studied [118, 57, 95, 8, 138]. In applications

of FMR, “mixtures of experts" and its extension “hierarchical mixtures of experts", are

widely used and have achieved great success in various applications [60, 63, 62]. See [95]

for a comprehensive review for finite mixture models. While original FMR was developed

mainly for low-dimensional data, as high dimensional data is common in recent years,

fitting FMR directly is ill-suited due to the curse of dimensionality.

In terms of penalized methods, various sparsity-inducing penalties have been proposed

for high dimensional data. They often improve model performances due to bias-variance

trade-off. In GLM, the Lasso [144] is a penalized method by adding l1 penalty in the

maximum likelihood, for simultaneous parameter estimation and feature selection. In

applications where features can be grouped by prior knowledge (for example, genes (fea-

tures) are grouped into pathways), Group Lasso [160, 96] and overlapping Group Lasso

[59] extend Lasso for feature selection at the group level; Sparse Group Lasso [129, 120]

improves Group Lasso by further inducing within-group sparsity.

In the multi-task learning and multi-label classification, l2,1 norm that is of the same

functional form with Group Lasso is widely used as penalty [86, 105, 42, 128, 148]. l2,1

norm is applied mainly for capturing the similarity and relatedness in feature structures
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among different tasks or labels.

In the context of FMR, Khalili et al. [65] and Städler et al. [132] are the pioneer works

that combine FMR and feature selection via sparsity-inducing penalty. Both works consider

l1-norm penalized FMR and solve the penalized MLE using EM-algorithm, with challenges

in the M-step due to the non-smoothness of l1 penalty. In Khalili et al. [65], a differen-

tiable approximation of l1 penalty is used and M-step is numerically optimized by solving

the system of equations given by the first order conditions. Städler et al. [132] differs from

Khalili et al. [65] that a re-parameterization strategy is used, resulting in a convex prob-

lem in the M-step. This re-parameterization is beneficial as efficient algorithms such as

coordinate descent in convex optimization can be applied. As mentioned in introduction,

l1 penalized FMR misses the grouping information of parameters in FMR, our approach

of sparse l2,1 penalized FMR improves this limit and extends l1 penalized FMR, leading

to group structured sparsity while keeping the ability of selecting component-dependent

features.

3.3 Method

Notations: Scalars are denoted as lower case letters, vectors and matrices as bold

letters with vectors viewed as one-column matrices. || · ||1 represents the l1-norm of a

vector or a matrix, || · ||2 the l2-norm of a vector, || · ||F the Frobinius norm of a matrix,

|| · ||2,1 the l2,1-norm of a matrix. R+ is the set of positive reals. v′ is the transpose of a

vector v (or matrix). For a matrix M , M i· and M ·j are used to represent the i-th row and

the j-th column respectively.
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3.3.1 Finite Mixture of Regression

Let {(xi, yi), i = 1, · · · , n} be the set of independent observations, where xi = (xi1, · · · , xip)′ ∈

Rp is the p-dimensional vector of features for the i-th observation, and yi ∈ R is the re-

sponse. X represents the n × p design matrix and Y the vector of observation responses.

The finite mixture of regression model (with k mixture components) is given as follows:

y|x ∼ π1N (β01 + x′β1, σ
2
1) + · · ·+ πkN (β0k + x′βk, σ

2
k),

where πj represents the mixture probability, σj (σj > 0) the standard deviation, (β0j,βj)

the linear coefficients for the j-th Gaussian component N (β0j + x′βj, σ
2
j ) (1 ≤ j ≤ k). πj ’s

satisfy πj > 0 and
∑k

j=1 πj = 1.

The finite mixture of regression model is studied from the maximum likelihood ap-

proach. The parameter of FMR,

Θ = (π1, · · · , πk, β01, · · · , β0k,β1, · · · ,βk, σ1, · · · , σk),

is estimated by minimizing the (scaled) negative log-likelihood:

L(Θ) = − 1

n

n∑
i=1

log
( k∑
j=1

πj√
2πσj

exp
(
−

(yi − β0j − x′iβj)2

2σ2
j

))
, (3.1)

with the constraint
∑k

j=1 πj = 1, σj > 0.

3.3.2 Feature Selection in l2,1-norm Penalized FMR

Assume that for the j-th (1 ≤ j ≤ k) mixture component βj = (β1j, · · · , βpj)′, and write

β = (β1, · · · ,βk) as a (p × k) matrix of parameters. Let βl· = (βl1, · · · , βlk) ∈ Rk is the



31

m-th row of β, corresponding to the l-th feature in the finite mixture model. With this

correspondence, β can be decomposed into p such parameter groups.

The l2,1-norm of β is defined as:

||β||2,1 =

p∑
l=1

√√√√ k∑
j=1

β2
lj =

p∑
l=1

||βl·||2. (3.2)

Using l2,1-norm as a penalty, the penalized MLE for FMR is obtained by solving:

arg min
Θ
L(Θ) + λ||β||2,1, (3.3)

where λ > 0 is a tuning parameter.

The l2,1 penalty selects features at the group level: with a large λ, one feature is unse-

lected by dropping out the corresponding whole parameter group. For the selected param-

eter group in l2,1, every element is non-zero. However, this property seems restrictive when

the component-dependent features in FMR may exist. To this end, we further propose the

sparse l2,1 penalty in FMR by incorporating l1-norm:

P (β) = (1− α)
√
k||β||2,1 + α||β||1 (3.4)

where α ∈ [0, 1] is a trade-off between l1 and l2 norm.
√
k is used for a balance between

l1 and l2 penalty. Notice that if α = 1, (3.4) is exactly the l1 penalty; while α = 0, (3.4) is

deduced to l2,1 penalty.
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With sparse l2,1 penalty, (3.3) can be extended to

arg min
Θ
L(Θ) + λP (β), (3.5)

with constraints Θ ∈ Rk
+ × Rk(p+1) × Rk

+,
∑k

j=1 πj = 1.

3.3.3 Re-parameterization

The general framework for maximum likelihood approach in unpenalized FMR is to use

EM-algorithm. In the penalized cases, existing methods [132, 65] adopt EM approach with

optimizing the expectation of penalized complete log-likelihood. With the conventional

parameterization Θ, the subproblem of optimization in the M-step is a challenging task due

to non-convexity of the negative expected complete log-likelihood and non-smoothness of

the sparse l2,1 penalty. However, the non-convexity can be tackled by a re-parameterization

of model parameters [132], resulting in a convex optimization problem in the M-step. The

same trick can be applied in the sparse l2,1 penalized FMR. Although the non-smoothness

induced by l2,1- and l1-norm still exists, as we show in the next section, re-parametrization

is sufficient for an effective optimization scheme in the M-step of EM algorithm.

In FMR, the negative maximum likelihood function (3.1) can be re-parameterized, for

j = 1, · · · , k, as follows:

τj = σ−1
j , η0j = β0j/σj, ηj = βj/σj.

Let Φ = (π1, · · · , πk, η01, · · · , η0k,η1, · · · ,ηk, τ1, · · · , τk). The re-parameterization yields an
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one-to-one mapping from Θ to Φ. Hence, (3.1) can be rewritten as:

L(Φ) = − 1

n

n∑
i=1

log
( k∑
j=1

πj
τj√
2π

exp
(
−

(τjyi − η0j − x′iηj)2

2

))
. (3.6)

Under the re-parametrization, the sparse l2,1 penalized MLE Φ∗ for FMR is given by the

following optimization problem:

Φ∗ = arg min
Φ
L(Φ) + λP (η), (3.7)

where Φ ∈ Rk
+×Rk(p+1)×Rk

+,
∑k

j=1 πj = 1. λ and α are the tuning parameters. Notice that

η0j ’s are not penalized.

3.4 Non-convex Optimization

In this section, we present a EM-based algorithm for numerically optimizing sparse l2,1

penalized FMR.

In the following sections, for notational ease, we have suppressed η0j into x′ηj except

in (2b) and (2c) of M-step. 〈·, ·〉 represents dot product and � element-wise product for

two matrices of the same dimension.

Let lc(Φ) be the complete log-likelihood function:

lc(Φ) =
n∑
i=1

k∑
j=1

[
zij log

( τj√
2π

exp
(
−

(τjyi − x′iηj)2

2

))
+ zij log πj

]
,

where {zij : j = 1, · · · , k} is the latent membership vector for the i-th observation be-

longing to which mixture component: zij = 1 and zir = 0 for r 6= j indicating the i-th

observation belongs to the j-th component. The sparse l2,1 penalized (scaled) negative
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complete log-likelihood is then

Lc(Φ) = − 1

n
lc(Φ) + λP (η).

The EM algorithm minimizes Lc(Φ) by iterating between the E- and M-step as follows.

Assume that Φ(m) is the current parameter estimate:

E step. Given the current estimate Φ(m), the E step computes the conditional expectation

Q(Φ) of Lc(Φ) with respect to the latent variables zij ’s. This is equivalent to compute the

expectation w(m)
ij of zij for i = 1, · · · , n and j = 1, · · · , k:

w
(m)
ij =

π
(m)
j τ

(m)
j exp

(
− 1

2
(τ

(m)
j yi − x′iη

(m)
j )2

)∑k
r=1 π

(m)
r τ

(m)
r exp

(
− 1

2
(τ

(m)
r yi − x′iη

(m)
r )2

) . (3.8)

Q(Φ) =− 1

n

n∑
i=1

k∑
j=1

w
(m)
ij

[
log
( τj√

2π
exp

(
−

(τjyi − x′iηj)2

2

))
+ log πj

]
+ λ
(
(1− α)

p∑
l=1

√
k||ηl·||2 + α

p∑
l=1

||ηl·||1
)
.

M step. The update Φ(m+1) is obtained by minimizing Q(Φ) with respect to Φ, which

is further equivalent to solve two independent minimization problems with respect to

(π1, · · · , πk) and (η01, · · · , η0k,η1, · · · ,ηk, τ1, · · · , τk) respectively.

(1) Minimization with respect to (π1, · · · , πk). This is the same with mixture probability

update in the usual EM algorithm:

π
(m+1)
j =

1

n

n∑
i=1

w
(m)
ij , j = 1, · · · , k. (3.9)
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(2) Update Φ−π = (η01, · · · , η0k,η1, · · · ,ηk, τ1, · · · , τk). After simplification of Q(Φ), we

equivalently solve the following convex problem (each summand is convex):

Φ
(m+1)
−π = min

Φ−π
S(Φ−π)

S(Φ−π) =− 1

n

k∑
j=1

( n∑
i=1

w
(m)
ij

)
log τj

+
1

n

k∑
j=1

n∑
i=1

w
(m)
ij

2
(τjyi − x′iηj)2

+ λ
(
(1− α)

p∑
l=1

√
k||ηl·||2 + α

p∑
l=1

||ηl·||1
)
.

(3.10)

The sparse l2,1 penalty is separable between blocks of ηm·’s [146], implying block coordi-

nate algorithm is well suited for minimizing S(Φ−π).

In the block coordinate descent, we cyclically update each parameter (or parameter

blocks) by approximately minimizing S(Φ−π), holding all except the current parameter

fixed until convergence. This update strategy leads to the updates as follows. As a side

note, Eq. (3.10) can be initialized by the current estimate Φ
(m)
−π . For notational simplicity,

we drop the iteration index of Φ−π and use Φ̃−π = (η̃01, · · · , η̃0k, η̃1, · · · , η̃k, τ̃1, · · · , τ̃k) to

represent the current value for Φ−π in optimizing Eq. (3.10).

(2a) Update τj.

Since τj is not penalized and S(Φ−π) be differentiable with respect to τj, first order condi-

tion ∂S(Φ−π)/∂τj = 0 results in the update for j = 1, · · · , k:

τ̃j ←
〈W (m)

·j ,Y � Ŷ 〉+
√
〈W (m)

·j ,Y � Ŷ 〉2 + 4sj〈W (m)
·j ,Y � Y 〉

2〈W (m)
·j ,Y � Y 〉

, (3.11)
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where W (m)
·j = (w

(m)
1j , · · · , w

(m)
nj )′, Y = (y1, · · · , yn)′, Ŷ = (x′1η̃j, · · · ,x′nη̃j)′ and sj =∑n

i=1w
(m)
ij .

(2b) Update η0j.

Due to differentiability of S(Φ−π) respect to η0j, the first order condition ∂S(Φ−π)/∂η0j = 0

gives the minimizer

η̃0j ←
〈W (m)

·j , Ĥ0j〉
sj

, j = 1, · · · , k, (3.12)

where Ĥ0j = (τ̃jy1 − x′1η̃j, · · · , τ̃jyn − x′nη̃j).

(2c) Update parameter block ηl· = (ηl1, · · · , ηlk).

Minimizing S(Φ−π) with respect to ηl· is equivalent to minimizing (with matrix notation)

min
ηl·

1

2n
||
√
W (m) � (R̃−

∑
h6=l

X ·hη̃h· −X ·lηl·)||2F + λ1||ηl·||1 + λ2||ηl·||2, (3.13)

where
√
W (m) = (

√
w

(m)
ij )n×k, R̃ = (r̃ij)n×k with r̃ij = τ̃jyi− η̃0j, λ1 = λα, λ2 = λ(1−α)

√
k.

Since the problem in Eq. (3.13) is convex, an efficient gradient decent type algorithm can

be used that combines majorizing-minimization scheme with the first order condition (in

terms of subgradient).

Details of Step (2c) We denote the quadratic term in Problem (3.13) (ignoring 1/2n)

as

M(ηl·) = ||A−
√
W (m) �X ·lηl·||2F ,

whereA =
√
W (m)� (R̃−

∑
h6=lX ·hη̃h·). Simple calculation gives us that for j = 1, · · · , k:

∂M

∂ηlj
= 2
[
||
√
W (m)

·j �X ·l||22ηlj − (
√
W (m)

·j �X ·l)′A·j
]
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∂2M

∂ηlj∂ηlr
=


2||
√
W (m)

·j �X ·l||22 if j = r

0 if j 6= r,

implying the Hessian matrix HM of M is diagonal. If we let

t = 2 max
1≤j≤k

||
√
W (m)

·j �X ·l||22,

we see that tI will dominate HessianHM of M . That is, tI−HM is positive semi-definite.

Consequently, we have a majorization function Mm by replacingHM with tI in the second

order Taylor expansion of M (which is M itself) at the current value η̃l· of ηl·:

Mm(ηl·) = M(η̃l·) + (ηl· − η̃l·)∇M(η̃l·) +
t

2
||ηl· − η̃l·||22,

Mm(ηl·) ≥M(ηl·),

where ∇M is the Jacobian of M .

With the help of the majorizing function Mm(ηl·), we approximately solve Problem

(3.10) by solving:

min
ηl·

1

2n
Mm(ηl·) + λ1||ηl·||1 + λ2||ηl·||2,

which is further equivalent to

min
ηl·

t

4n
||ηl· − (η̃l· −∇M(η̃l·)/t)||22 + λ1||ηl·||1 + λ2||ηl·||2 (3.14)

For Problem (3.14), by the first order condition given by subgradient, the closed form
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Table 6: Model parameter specification.

M1 M2 M3 M4 M5 M6
n 300 300 450 300 300 300
p 50, 100 50, 100 50, 100 50, 100 50, 100 50,100
k 2 2 3 2 2 2
π (0.5,0.5) (0.5,0.5) (1/3,1/3,1/3) (0.5,0.5) (0.5,0.5) (0.5,0.5)
σ (0.5,0.5) (1.5,1.5) (0.5,0.5) (0.5,0.5) (1,1) (0.3,0.3)
β1 (4,4,4,4,4) (4,4,4,4,4) (10,10,10,10,10,) (4,4,4,4,0,0,0,0) (4,4,4,4,4,4,0,0,0) (4,4,4,4,4,4,0,0,0)
β2 (-1,-1,-1,-1,-1) (-1,-1,-1,-1,-1) (3,3,3,3,3) (0,0,0,0,-1,-1,-1,-1) (-1,-1,-1,0,0,0,-1,-1,-1) (-1,-1,-1,0,0,0,-1,-1,-1)
β3 - - (-1,-1,-1,-1,-1) - - -

of exact solution can be calculated and given as follows:

ηl·
? =


0, ||Tλ1(µu )||2 ≤ λ2[
1− λ2u

||Tλ1u(µ)||2

]
· Tλ1u(µ), ||Tλ1(µu )||2 > λ2,

(3.15)

where u = 2n/t, µ = η̃l· − ∇M(η̃l·)/t, S(u, v) = sign(u) max{|u| − v, 0} (u ∈ R, v ≥ 0)

is the soft-thresholding operator and Tv(µ) =
(
S(µ1, v), · · · , S(µd, v)

)
is the element-wise

soft-thresholding. Iteratively applying this update solves Problem (3.13).

Remark: The convergence of block coordinate descent for Problem (3.10) in non-trivial

and well established in [146]. In our implementation, we approximately optimize M-step

by making one-iteration progress. We also adopt random initialization for EM algorithm

in the implementation as it can be trapped in local optima. In our practice, both strategies

work well.

3.5 Experiments

3.5.1 Simulation

In this section, we set up six models (M1-M6) for simulation to investigate perfor-

mances of (sparse) l2,1 penalized FMR. M1, M2, M3 and M4 are designed to evaluate l2,1
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penalized FMR (α = 0), with comparison to l1 penalized FMR1 (α = 1). In M5 and M6,

we evaluate the sparse l2,1 penalized FMR (0 < α < 1). For model evaluation, we report

average results on 50 independent runs.

In all models, design matrixX is generated from multivariate normal distribution with

zero mean and a diagonal covariance matrix. Response Y is then generated from finite

mixture of k Gaussians. Details of model setup are specified in Table 6.

In each run of simulations, we partitioned simulated data (n observations) to three

equal subsets: training, validation and testing sets. A sequence of models corresponding

to a λ-sequence is trained on training data; the optimal value of tuning parameter λ along

with its corresponding trained model is selected as the one minimizing NLogloss (see be-

low) on validation data. Finally, predictive NLogLoss are evaluated and reported on testing

data.

Performance metrics We assess the performance of penalized FMR from different per-

spectives. For predictive performance, we used negative log-likelihood loss (NLogLoss) in

trained model:

−
n∑
i=1

log
( k∑
j=1

π̂j
1√

2πσ̂j
exp

(
−

(yi − β̂0j − x′iβ̂j)2

2σ̂2
j

))
.

To measure sparsity, we first reported “true positive rate" (TPR) and “false positive rate"

1l1 FMR fitted with R package "fmrlasso".
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Table 7: M1-M4: predictive negative log-likelihood (smaller is better) with standard devi-
ation for l2,1 and l1 penalized FMR.

p M1 M2 M3 M4

50 l2,1 186.35 (10.80) 267.94 (15.48) 399.06 (24.86) 192.01 (17.35)
l1 190.21 (16.47) 277.30 (20.45) 402.28 (57.28) 180.09 (16.41)

100 l2,1 201.36 (10.30) 282.05 (27.33) 429.35 (60.04) 219.65 (24.32)
l1 229.42 (31.94) 302.63 (23.87) 493.83 (54.44) 198.43 (18.97)

(FPR):

TPR =
#active parameters selected

#active parameters
,

FPR =
#inactive parameters selected

#inactive parameters
.

To further quantify accuracy of feature selection, we used root mean squared error (RMSE)

of estimators:

RMSE =

√
1

kp
||β − β̂||2F ,

where β is the matrix of true values and β̂ is the estimation matrix.

Results on M1-M4 In M1-M4, we specifically investigate performances of l2,1 FMR

(α = 0), in comparison with l1 FMR. M1 and M2 have the same model setups with five

active parameters, except that M2 is noisier than M1: true standard deviation is 0.5 vs 1.5.

M3 is slightly more complicated with three mixture components. M4 has similar setups

with M1 but differs in the sparsity pattern of active parameters. There are two different

sparsity patterns in four models: M1, M2 and M3 are of the same sparsity pattern that all

mixture components have active parameters corresponding to a same set of features; on

the contrary, mixture components in M4 are of heterogeneous feature structure: none of

features are active in both two components.

We fitted the models with p = 50 and p = 100, keeping true parameters unchanged
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while doubling noisy parameters. Since l2,1 penalty performs parameter selection at the

group level, it implies an homogeneous assumption of active features for all mixture com-

ponents. Therefore, l2,1 FMR is expected to perform better in M1, M2 and M3, when the

underlying assumption is satisfied, but worse than l1 in heterogeneous case of M4. Simu-

lation results confirm our expectations on l2,1 FMR.

Table 7 presents the predictive negative log-likelihood. In either case of p = 50 and

p = 100, l2,1 FMR has better predictive power than l1 FMR in M1, M2 and M3, but less

in M4. In evaluation of feature selection, Figure 2 shows the results. We found that with

respect to estimation accuracy and active parameter selection, RMSE and TPR display the

same trend: l2,1 is overall better than l1 in M1, M2 and M3, but worse in M4. Interestingly

in terms of FPR, l1 penalty performs overall better than l2,1 in M1-M4. This is possibly

due to the effect of group selection in l2,1 penalty. However, even with a larger FPR in

M1, M2 and M3, the smaller RMSE of l2,1 along with a larger TPR indicates that the false

positives (i.e., inactive parameters selected) in l2,1 are estimated accurately as insignificant

numbers. It is particularly impressive that in M2 and M3, adding more noisy features, l2,1

remains stable and robust while l1 has a significant loss in TPR and RMSE.

Results on M5-M6 As we see the experimental results in M1-M4, the homogeneous

assumption of active features is critical for l2,1 penalty. In real cases, we believe this as-

sumption is too restrictive to be satisfied. To alleviate the limits of l2,1, we introduce sparse

l2,1 penalized FMR that is a weighted combination of l1 norm and l2,1 norm. As a result,

the sparse l2,1 penalty has a property of further selecting parameters within the selected

parameter groups, which could potentially enhance the performance of l2,1 penalty only.

With this purpose in mind, we designed M5 and M6 to show that sparse l2,1 indeed
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Figure 2: RMSE, TPR and FPR for l2,1- and l1 penalty on M1-M4. For RMSE and FPR,
smaller is better; for TPR, larger is better.

Table 8: M5-M6: predictive negative log-likelihood (smaller is better) with standard devi-
ation for sparse l2,1 FMR, fitted with different α’s.

p α M5 M6

50

0 (l2,1) 258.45 (21.63) 188.35 (17.44)
0.25 256.26 (21.56) 183.75 (17.83)
0.50 255.37 (22.06) 182.99 (18.21)
0.75 256.22 (26.43) 181.72 (19.87)
1 (l1) 256.49 (25.96) 166.82 (20.61)

100

0 (l2,1) 281.24 (25.89) 224.08 (33.43)
0.25 277.89 (26.87) 216.77 (27.20)
0.50 277.56 (26.87) 218.72 (35.07)
0.75 279.07 (26.92) 231.14 (55.18)
1 (l1) 289.84 (35.66) 236.09 (51.30)

benefits from incorporating within-group sparsity in l2,1. M5 and M6 have the same setups

except that M5 is noisier than M6. Notice that in M5 and M6, feature structures for mixture

components are different yet with three active features in common. In these cases, we fit

sparse l2,1 penalized FMR with α ∈ (0, 1) and compare it with models of l2,1 only and l1
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Figure 3: RMSE, TPR and FPR for sparse l2,1 penalty FMR fitted with different α values
{0, 0.25, 0.50, 0.75, 1} on M5 and M6. Note that α = 0 is l2,1 penalty, α = 1 is l1 penalty.

only.

In the sparse l2,1 penalty, α could be treated as a tuning parameter and the optimal

value can be selected by validation set or cross validation. In our experiment, to keep

computational cost moderate, we pre-fix α on a grid of values {0, 0.25, 0.5, 0.75, 1}, where

α = 0 corresponds to l2,1 penalty and α = 1 to l1 penalty. Predictive negative log-likelihoods

are shown in Table 8. We see that in four cases, the sparse l2,1 penalty (that is, α 6= 0)

indeed provides improvement over l2,1 penalty only. In the setting of higher dimension

p = 100 or larger noise σ = 1, it also performs better than l1 penalty. Figure 3 shows

sparsity performance. One observation is that, due to group selection effect, l2,1 overall

has larger both the TPR (larger is better) and FPR (smaller is better); incorporating l1 into
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Figure 4: Histogram of log(time to recur).

l2,1 alleviates this trade-off, leading that the sparse l2,1 has better estimation RMSE than

the single l2,1 penalty. Similarly as predictive performance, it also has better accuracy than

the single l1 penalty in the noisier models.

3.5.2 Real Data Application

We apply the sparse l2,1 penalized FMR in (1) Wisconsin breast cancer dataset (WBC)

that is publicly available at UCI machine learning repository2; (2) NHL salaries dataset 3.

WBC contain 194 records of “time to recur" for patients with breast cancer (after removing

4 cases with missing values) with 32 features describing characteristics of the cell nuclei

in the digitized image of breast cancer. NHL dataset used in experiments has 262 records

of NHL players with 122 features measuring players’ performances. In our experiment,

we used the logarithm of the original targets as the targets due to the right-skewness of

original scale. Figure 4 shows the histograms of transformed targets.

The histogram in Figure 4 demonstrates a highly unbalanced mixture of Gaussian dis-

2http://archive.ics.uci.edu/ml/index.html
3https://www.kaggle.com/camnugent/predict-nhl-player-salaries
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Table 9: Predictive performance. 10-fold mean predictive negative log-likelihood for
unpenalized-, l1 penalized- and sparse l2,1 penalized FMR. Number of components varies
from 1 to 3.

Model/Component(s) 1 2 3

WBC
unpenalized 1.87 3.10 15.70

l1 1.70 1.71 1.69
sparse l2,1 - 1.74 1.66

NHL
unpenalized 1.85 -

l1 1.41 1.40
sparse l21 - 1.38

tribution. Thus we fit FMR with k = 1, 2, 3 components for WBC and k = 1, 2 for NHL.

Three methods, unpenalized-4, l1 penalized- and sparse l2,1 penalized FMR, were applied

in the experiment. For penalized FMR, tuning parameters λ and α are selected by 10-fold

cross-validation based on predictive mean negative log-likelihood (CV loss).

Predictive Performance Table 9 shows the results of predictive negative log-likelihood.

It turns out that the optimal value (1.66 and 1.38) is achieved with sparse l2,1 FMR. An

interesting observation for WBC is that for unpenalized FMR, a mixture of two or three

components introduces much variance in modeling, resulting in a significant larger CV loss

than a single component linear model (3.10 and 15.70 respectively compared with 1.87);

for NHL data, unpenalized mixture of two Gaussians fails due to the high dimensional-

ity (122 features). In contrast, l1 and l2,1 FMR are more robust when model complexity

increases.

Feature Selection In Table 10, the sparse l2,1 FMR selects 8 features for WBC data.

The selected features demonstrate heterogeneous effects in different mixture components,

possibly due to high correlations among features. However, in terms of predictive perfor-

mance, the sparse l2,1 penalized FMR performs even better than the unpenalized uni-modal

4Unpenalized FMR was fitted with R package "flexmix".
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Table 10: Parameter estimation for WBC dataset.
Feature Component 1 Component 2 Component 3
texture -0.060 -0.010 0.028

area -0.004 -0.002 - 0.001
area SE 0.012 -0.008 -0.013

worst texture -0.044 -0.041 0.045
worst perimeter 0 -0.014 0.007

largest area 0 0.002 0.001
tumor size 0.077 -0.027 -0.015

positive lymph nodes 0.047 0.011 -0.097

Table 11: Parameter estimation for NHL dataset.
Feature Component 1 Component 2

games played 0.057 0.016
shifts 0.716 0.091

setup passes 0.012 0
shots on goal 0.005 0
faceoff wins 1.371 0.070

penalty drawn 0.657 0.042

model (non-mixture) with an 11% improvement ((1.87-1.66)/1.87). Table 11 shows the

results for NHL data. The selected features suggest that players who are able to bring more

wins or scores (faceoff wins, penalty drawn and shifts) have higher salaries (Component 1

corresponds to the left peak and Component 2 to the right peak of the histogram in Figure

4). This interpretation accords with our intuitions that better players have higher pays.

3.6 Conclusion

In this chapter, we have introduced the sparse l2,1 penalized FMR model with feature se-

lection. The l2,1 penalty captures relatedness among mixture components. We have shown

in the simulation studies l2,1 is more robust than l1 penalized FMR in noisy cases. Sparse l2,1

improves l2,1 allowing component-dependent feature structure. For model inference, we

use EM algorithm and propose an efficient update scheme based on re-parametrization.

Finally, sparse l2,1 is applied to a real world dataset with an improvement over full lin-

ear model as well as feature selection. Future work includes extending the sparse l2,1 to
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mixtures of logistic or Poisson regressions.



48

CHAPTER 4 PREDICTIVE MODELING FOR HEALTHCARE INFORMATICS

4.1 Introduction

Predictive modeling is an important task in clinical research, as it can unveil associ-

ations between risk factors and asymptomatic disease phenotypes enabling prediction of

patients most likely to benefit from early intervention. Traditional methods, such as linear

regression, are often used but render predictions based only on the low-level features (e.g.,

demographics, blood pressure, cholesterol level, glucose level et al.), simplifying the inher-

ent, complex biological mechanism of disease progression as additive effects of low-level

features. As a result, nonlinear relations are excluded leading to information losses, and

potentially less accurate performance. On the contrary, deep neural networks (DNNs) have

made impressive improvements for complex predictive tasks in natural language process-

ing and computer vision. The key factor for their success is that DNNs are capable of learn-

ing high-level information from low-level input features. This merit of DNN makes it very

promising for predictive modeling in clinical research, enabling capture of non-additive

effects among various low-level features. Successful DNNs often require abundant labeled

data to avoid overfitting.

However, there exist two challenges for DNN applications in healthcare informatics.

The first challenge is the limited availability of large datasets. Collecting labeled data in

clinical practice is expensive and time-consuming as the labeling process requires dedi-

cated personnel, explicit definitions, and a formalized mechanism for data compilation.

Consequently, we only have limited available labeled data, precluding application of DNN

methods to various challenging, but important clinical prediction problems. On the con-

trary, directly fitting DNNs with small data can result in severe overfitting that is not de-
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sirable in healthcare informatics. The second one is that as patient subgroups exhibit

differential health outcomes that are potentially associated with different risk factors, a

successful model would ideally take these aspects into consideration for patient stratifica-

tion. However, existing DNN models either rely on the pre-defined patient subgroups or

take the “one-size-fits-all" approach and are built without considering patient stratification.

Consequently, those models are not able to discover patient subgroups and the risk factors

are thereafter identified for the entire patient population, failing to account for potential

group differences.

In this chapter, we propose two different DNN models for the challenges mentioned

above. For the small data problem, we propose auxiliary-task augmented network (ATAN),

a model that predicts the primary target with introducing clinically relevant measures as

auxiliary predictive tasks. With auxiliary tasks, ATAN takes advantage of benefits from

multi-task learning (MTL) — an approach of regularization and implicit data augmenta-

tion. Without assumption of homogeneous feature representation for all tasks in classic

multi-task frameworks, ATAN explicitly models the shared feature representation for all

tasks, as well as task-specific representation, and combines them together using a weight-

ing mechanism to capture the clinical relevance. By the weighting mechanism, we con-

ceptually quantify the relevance between the primary and auxiliary target. While LVMI

was collected as the primary target in our test case, many other variables from CMR that

are clinically related with LVMI are also available (see Section IV-A), providing auxiliary

targets that can be utilized in predictive modeling. To demonstrate the effectiveness of our

method, we apply ATAN to our hypertension dataset and compare its predictive perfor-

mance with different popular methods (k-nearest neighbor, linear regression, Lasso et al.
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[30]). We also interpret our model by analyzing the learned parameters (a.k.a. weights)

to identify clinically relevant risk factors.

For patient stratification problem, we introduce a unified DNN model, termed as deep

mixture of neural networks (DMNN), that simultaneously predicts clinical outcomes and

discover patient subgroups. DMNN consists of an embedding network with gating (ENG)

and several local predictive networks (LPNs). ENG embeds raw input features into high-

level feature representation which is further used as input for LPNs. Unlike the existing

DNN models without subgroup identification, patients will be grouped that share simi-

lar functional relations between inputs and clinical outcomes via the gating mechanism

in ENG, and each functional relation is modeled by one LPN. The subgroup discoveries

enable us to apply existing interpretation techniques to identify subgroup-specific risk fac-

tors. By explaining the local input-outcome relations captured by LPN within each patient

subgroup, the subgroup-specific sets of risk factors can provide information to account for

health disparities. To demonstrate the effectiveness of DMNN, we conduct extensive ex-

periments on a clinic dataset for predicting the diagnosis of acute heart failure. DMNN can

achieve state-of-art predictive performance when comparing with other baseline machine

learning models. We apply mimic learning technique [9] for interpretation on DMNN and

show that DMNN can provide informative risk factors for clinical decision making.

4.2 Related Work

Deep Predictive Model Applications of deep learning models have been flourishing

due to the increasing availability of EHR data. Tang et.al[143] and Purushotham et.al[115]

benchmark the performance of DNNs with comparison to other machine learning models

on MIMIC III data. Che et.al[9] proposed DNN model that incorporates prior knowledge of
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medical ontologies as regularization for predicting ICU outcomes. Choi et.al[13] proposed

a recurrent neural network with GRU for predictions of heart failure onset. Li et.al[83]

and Suo et.al[139] develop multi-task DNN models for predicting disease progression and

diagnosis where multiple targets are used as an approach of regularization. Another line of

predictive modeling with deep learning is to utilize the power of deep unsupervised learn-

ing to learn high-level feature representations in the latent vector space. DNN feature

learning significantly reduces the workload of feature engineering especially for complex

data like EHR and can be used in the downstream predictive tasks. For example, Miotto

et.al[98] and Lasko et.al[69] learn patient representations from EHR, and Choi et.al[15]

embeds diagnosis codes and procedure codes into vector space. The learned representa-

tions are then used to predict patient health outcomes. However, those methods don’t

specifically consider the heterogeneity in patients and consequently, model interpretations

are for the entire patient population, lacking granularity to account for subgroup differ-

ences.

Multi-task learning MTL for predictive modeling is a machine learning paradigm that

jointly learns a model for multiple tasks [163]. When these tasks are related to each other,

the joint learning can lead to improvement in the generalized predictive performance

by leveraging information contained in other tasks. This perspective inspires a learning

strategy that many single-task problems often introduce auxiliary tasks and thereafter be

transformed into multi-task problems. With this approach for the target (single) task,

MTL can be viewed as a method of regularization and implicit data augmentation. See

[7, 37, 123, 163] for more details on MTL. There have been many successful applications

of MTL in biomedicine. For example, [136, 161] apply MTL in conjunction with linear
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model to predict Alzheimer’s disease progression; [111] uses MTL for a multi-label task in

a clinical text classification problem; [114] propose group Lasso under the MTL paradigm

to detect population heterogeneity at the genetic level.

DNN MTL DNN-based MTL (DMTL) has been attracting much interest recently as DNNs

can be conveniently adapted to MTL: DNN can have multiple output neurons for multiple

tasks. Aside the high-level learning of DNN, another advantage of DMTL over linear-based

modeling is that the hierarchical feature learning provides a flexible way of capturing rele-

vance among multiple tasks. These merits lead to many applications for various problems

such as speech recognition and computer vision ([89, 125, 157, 164]). Particularly in

bioinformatics and health informatics, [117] uses DMTL to predict protein interactions

between HIV and human proteins; [137] integrates DNN feature learning into SVM-based

MTL for diagnosis of Alzhermer’s disease. For general considerations in DMTL, we refer to

[7] and [123] for details.

Patient Subgroup Discovery Subgroup identification is one of the most important

tasks in medical science and has been studied in various settings. For example, Seymour

et.al[126] and Lu et.al[92] use unsupervised clustering techniques to group patients by

sepsis and cancer subtypes respectively. In the study of treatment efficacy, subgroups

are identified as the patients that have similar treatment responses. In this context, tree

methods[81, 134, 90, 26] are developed that patients are grouped in the leaf node that

are homogeneous treatment effect. For predictive modeling that is studied in this chapter,

finite mixture of (Gaussian and logistic) regression (FMR)[78, 124, 132] and mixture of

experts (ME)[60, 61] were used to identify patient subgroups. However, FMR and ME

models are based on the conventional machine models which is less capable of extracting
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high-level information compared with DNNs. Also, they usually require clean and struc-

tured data to train and are not capable of handling complex EHR data (e.g multi-modal

and sequential data). To address those challenges in FMR and ME, our proposed DMNN

builds a unified DNN architecture that not only exploits the predictive power of DNNs but

also be able to discover patient subgroups.

4.3 Proposed ATAN

In this section, we present the proposed method ATAN. We start with the fully connected

network for predictive tasks. Then we describe our approach of utilizing auxiliary targets

under the multi-task learning framework. Finally, we present a method adapted from [35]

to our case for finding the risk factors.

Notations: We use R to represent the set of real numbers. Vectors and matrices are

denoted as bold letters and scalars as unbold letters.

4.3.1 Basic Feed-forward Network

We implemented fully connected feed-forward neural network (FNN) as the building

block of our model. But FNN itself can serve as a predictive model. The mathematical

formulation of FNN is described as follows.

Let (x, y) ∈ Rp × R be a sample, where x is the input p-dimensional feature and y be

the target. A FNN for regression task consists of one layer that takes x as input, followed

by k hidden layers for learning feature representations:

h1 = σ(W1x+ b1),

hi = σ(Wihi−1 + bi), i = 2, · · · , k
(4.1)
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and one output layer that make predictions using the highest level feature representations:

ŷ = Whk + b,

where Wi and W are the weight matrices with compatible dimensions, bi and b the bias

terms and hi the hidden state; σ(·) is the element-wise activation function, such as sigmoid,

ReLU or tanh; ŷ is the prediction of the network.

When there are multiple targets, FNN can be modified effortless to accommodate the

case. In the output layer,

ŷ = Whk + b,

where ŷ = (ŷ1, · · · , ŷT ) is the predictive vector of T targets. Notice that in this formulation

of multi-task learning, an implicit assumption is made that all tasks share the feature

representation.

To learn the model parameters, gradient descent based methods along with back prop-

agation are used to minimize the least square loss function.

4.3.2 ATAN Structure

Our central task is to build a predictive model for the primary target that clinicians care

about but costly to label (LVMI in our motivation example). We denote the primary target

by yc. In practice, we observe that in addition to the primary measure yc, there are often

other measures available, denoted as ya, that are clinically relevant to yc. This relevance

provides additional information for the primary task. By incorporating ya as the secondary

target, the predictive model can benefit from multi-task learning as described in Section
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II.

However, one pitfall with introducing auxiliary tasks is that the “relevance" is not uni-

versally defined. Multi-task methods generally either make assumptions, or define the

relevance based on the domain-specific knowledge. ATAN circumvents this issue assuming

that the primary target yc and the secondary target ya are jointly regulated by the shared

and task-specific biological mechanisms. Translating this assumption in modeling, ATAN

learns a feature representation that can be decomposed into a weighted sum of the shared

and task-specific feature representation. Fig. 5 presents the high-level overview of ATAN

structure.

Learning feature representations Let (x, yc, ya) ∈ Rp × R × R be a sample. We first

learn the shared and task-specific feature representations using feed-forward DNN (FDNN)

as follows

hs = FDNNs(x),

hc = FDNNc(x),

ha = FDNNa(x),

(4.2)

where FDNN(·) is calculated by (4.1) and the activation function therein is the element-

wise sigmoid function 1/(1 + exp(−x)). For notational convenience, we use Es, Ec and Ea

to represent the set of parameters for FDNNs, FDNNc and FDNNa respectively.

Based on our assumption, the final feature representations hfc and hfa for the primary
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Figure 5: Overview of ATAN with one auxiliary task. ATAN uses the shared network FDNNs

to capture the clinical relevance between the primary and auxiliary task and two indepen-
dent networks to learn the task-specific feature representations. Then ATAN merges the
shared and task-specific feature representations via a weighting scheme. Finally, ATAN
makes predictions using the merged representation. Note that FDNNc, FDNNs and FDNNa

are not restricted to the same architecture.
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and auxiliary task respectively are decomposed as a weighted sum as follows:

hfc = α1h
c + α2h

s, (4.3)

hfa = β1h
a + β2h

s, (4.4)

where {α1, α2} and {β1, β2} are the attention weights that conceptually quantify the con-

tributions of the shared and task-specific feature representations. Note that in this for-

mulation, hs, hc and ha are of the same dimension. As a side note, another strategy to

combine the task-specific and shared feature representations is through vector concatena-

tion hfc = [hc,hs]. But this approach could introduce more parameters for each h having

enough representation power. We hence prefer the weighted sum approach when only

limited amount of data is available.

To calculate {α1, α2} and {β1, β2}, we adopt a strategy that represents the compatibility

of shared and task-specific feature representations:

α1 =
1

2
cosd(hc,hs),

α2 = 1− α1,

(4.5)

for the primary task, and

β1 =
1

2
cosd(ha,hs),

β2 = 1− β1,

(4.6)

for the auxiliary task, where cosd(·, ·) is the cosine-distance between two vectors cosd(v1,v2)
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= v1 · v2/(||v1||2||v2||2) , || · ||2 is the euclidean norm of a vector. Since we use sigmoid as

the activation function, {α1, α2} and {β1, β2} are positive and hence proper weights. Note

that this strategy biases toward the shared feature representation and forces it to makes

at least half contribution (i.e., α2, β2 ≥ 0.5) to the final feature representation for ATAN

enjoying benefits of multi-task learning.

Model Training The predictions for yc and ya is calculated using the final feature rep-

resentations:

ŷc = W chfc + bc,

ŷa = W ahfa + ba,

(4.7)

where W c and W a are dimension-compatible vectors, bc and ba are bias terms.

The objective function is a weighted sum of the least squared loss functions for the

primary and auxiliary tasks:

min
Es,Ec,Ea,W c,W a,bc,ba

n∑
i=1

(yci − ŷci )2 + ω(yai − ŷai )2, (4.8)

where the summation is over n training samples, ω is a parameter controlling the weight

of the auxiliary task. We use standard gradient descent algorithm to solve Problem (4.8).

Note that ATAN is not restricted to one auxiliary target and multiple auxiliary targets can

be incorporated straightforwardly.

4.3.3 Analyzing Weights

Model interpretability and accuracy are both critically important in in clinic practice.

While DNNs is generally difficult to interpret, we can still analyze the learned weights to
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see how contributions of input features propagate through the network. This approach

was initially proposed in [35]. Here we adapt this method to fit the proposed ATAN model.

To keep notations uncluttered, let us take an example, as shown in Fig. 6, to see

how contributions of input features to the target can be recursively calculated from the

output end of DNNs. Assume the last 3 layers of FDNN are of size 2, 3 and 1 respectively;

W1 = (w1
ij)3×2 and W2 = (w2

ij)1×3 are the two weight matrices between layers. Let (g1, g2)

and (h1, h2, h3) be the two hidden layers, y the output layer.

For a hidden neuron ht (t = 1, 2, 3), its contribution Ct to the target y can be computed

as in linear regression:

Cty =
|w2

1t|∑3
i=1 |w2

1i|
.

For gk (k = 1, 2), its contribution Ckt to ht is

Ckt =
|w1

tk|∑2
i=1 |w1

ti|
.

Then the contribution Qkty of gk through ht to the target y is defined as

Qkty = CktCty.

Summing over all hidden neurons, the total contribution Qky for gk is given by

Qky =
3∑
t=1

Qkty.

For input features xi’s, we can recursively apply the strategy above to calculate the



60

𝑔1

𝑔2

ℎ2

ℎ1

ℎ3

𝑦

𝐶11
𝐶1𝑦

𝐶12

𝐶13
𝐶2𝑦

𝐶3𝑦

𝑥2

𝑥1

𝑥𝑝

Figure 6: A simple example showing the recursively procedure of calculating the contribu-
tion from g1 to the target y via h1 (red), h2 (green) and h3 (blue) using weight propagation
[35]. The total contribution Q1y from g1 to y is Q1y = C11C1y+C12C2y+C13C3y. Recursively
applying this strategy can calculate the contributions of input feature xi’s.

contributions.

Within the proposed ATAN model, the contribution of each input features to the pri-

mary target yc can be propagated through the task-specific network FDNNc and the shared

network FDNNs. Hence if we assume Qc
kyc and Qs

kyc are the contributions of feature xk

through FDNNc and FDNNs to yc respectively, the overall contribution Qkyc for xk is just

the weighted sum given by

Qkyc = α1Q
c
kyc + α2Q

s
kyc ,

which provides us a heuristic approach for interpreting ATAN, α1 and α2 are given by (4.5).

4.3.4 Application

In this section, we apply ATAN to our clinical dataset of African Americans with hy-

pertension at-risk for LVH and compare it with various baseline models to demonstrate its

effectiveness. We also analyzed ATAN with its learned parameters to rank risk factors. This

provides us some insight for understanding the progression of and potential targeted early

intervention for cardiovascular disease.

Data Information and Preprocessing Our study dataset was derived from a cohort of
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African American patients who presented to the emergency department of a single center

(Detroit Receiving Hospital) between October 2011 and November 2014 with a known

history of hypertension and elevated systolic blood pressure (> 160 mm Hg). Previous

studies have shown that there are disparities among hypertension patients with some who

are at greater risk of LVH, yet no single variable has sufficient power for explaining the

disparity. This motivates us to use a DNN model that is capable of capturing complex

feature interactions.

As noted, LVH was determined using LVMI as measured on CMR using a cut-point of

89 g/m2 in men and 73 g/m2 in women. Along with LVMI, other measures from CMR are

also available, such as wall thickness, left ventricular stroke volume to body surface area

(LVSVI) and left ventricular end-diastolic volume indexed to body surface area (LVEDVI).

These measures are clinically related to LVMI and could be used as the auxiliary targets in

ATAN.

For data preprocessing, we first remove samples with missing LVMI and measures

whose missingness is greater than 10%. The remaining dataset consists of 155 samples

and 65 measures, where 59 measures are used as features and the remaining 6 including

LVMI and other CMR results are used as targets. For missing values, we use “multiple

imputation chained equations" (MICE) [155] for imputation. We also standardize feature

values to have zero mean and unit variance. Table 12, 13 and Fig. 7 show the detailed

information about the used dataset and descriptive statistics of LVMI respectively.

Experiment ImplementationWe implement ATAN in Pytorch [116]. In ATAN, we select

one CMR measure as the auxiliary target. We experiment with posterior wall thickness and

LVEDVI separately for our auxiliary task. The architecture of ATAN is of 4 layers, within
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Table 12: Details of hypertension dataset. LVMI from CMR is the primary target and other
measures in CMR serve as the candidates for auxiliary tasks.

# Sample 155

# Features 59

• Demographics
• Lab results
(calcium, eGFR et al.)
• Heart functioning

(LV ejection rate et al.)
• Acoustic and electrocardiography

(Cornell product et al.)
• Applanation tonometry

(Central tension time index et al.)

# CMR results 6

• LVMI
• Heart wall thickness
(septal, posterior and anterior)
• LVSVI
• LVEDVI

Table 13: Descriptive statistics of LVMI.

Min 1st Qtl Median 3rd Qtl Max Mean Size

51.06 80.06 89.72 100.83 155.66 90.81 155

which 2 hidden layers are used to learn the shared and task-specific feature representa-

tions. We also restrict the dimension of hidden layers to 80 and 40 for FDNNc, FDNNs and

FDNNa for experimental convenience. ATAN is trained using standard gradient descent in

conjunction with L2 regularization.

For performance comparison, we also implement various baseline models in scikit-learn

library [110]. These baselines include k-nearest neighbors (KNN), random forest (RF),

support vector regression (SVR), regularized linear regression (Ridge and Lasso) and also

the multi-task Lasso (MTLasso). We also implement a 4-layer FNN model (MLP-4) for

predicting LVMI only. The hidden size is chosen to match the feature representation level

and dimension of ATAN.

The complete dataset is divided into training and testing sets by a split 125/30. For
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ATAN and MLP-4, we split out 90 samples from the training set to actually train the models

and the remaining 35 samples is used for validation and parameter selection. For base-

lines, we use three-fold cross-validation on the training set for parameter selection. The

evaluation metrics are finally reported on the testing set. We repeat this procedure 10

times.

For model evaluations, we use the following three metrics. Assume that yc = (yc1, · · · , ycn)

is the true vector of the primary target of n samples, ŷc = (ŷc1, · · · , ŷcn) the vector of pre-

dicted values:

• Mean squared error (MSE) measures the predictive error without considering the

magnitude of target:

MSE =
1

n

n∑
i=1

(yci − ŷci )2.

• Explained variance score (EVS) computes the explained variation that a model ac-

counts for the data:

EVS = 1− Var(yc − ŷc)
Var(yc)

,

where Var(·) is the variance.
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• Median absolute error (MAE) is a more robust error than MSE that compute the

median of absolute predictive errors:

MAE = Med(|yc − ŷc|),

where MED(·) outputs the median of a vector.

Results

Using entire feature set We first evaluate models using all features in the hypertension

data. The predictive performance on the test data is reported in Table 14. In the table,

ATAN-1 and multi-task lasso (MTLasso) use LVMI and LVEDVI as the tasks and ATAN-2

uses posterior wall thickness as the auxiliary task. From the table, we have following

observations.

• Among all models, ATAN with LVEDVI as the auxiliary target (ATAN-1) achieves the

best predictive performance and ATAN with posterior wall thickness (ATAN-2) the

second best in terms of MSE, EVS and MAE. For example, ATAN-1 and ATAN-2 provide

approximately 5% and 4% improvements over Lasso in MSE respectively.

• Compared with Lasso, the vanilla DNN (MLP-4) has almost identical performances.

Although DNN is expected to capture the complex relations among features for pre-

dicting LVMI, DNN may not efficiently learn feature representation for such small

data. However, ATAN-1 and ATAN-2 that introduce auxiliary tasks based on domain

knowledge bring some improvements in predictive modeling. This confirms that

multi-task framework is an effective regularization approach.
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Table 14: Predictive performance along with standard deviations on the testing data. For
MTLasso and ATAN, performance on LVMI is reported. ATAN-1 uses LVEDVI as auxiliary
target and ATAN-2 uses posterior wall thickness. For MSE and MAE, smaller is better; for
EVS, larger is better.

Method MSE EVS MAE

KNN 254.140 0.230 11.071
(52.329) (0.155) (1.861)

RF 227.803 0.261 10.778
(34.387) (0.129) (2.284)

SVR 294.831 0.083 10.530
(67.502) (0.015) (2.735)

Ridge 257.496 0.143 12.464
(26.513) (0.277) (1.742)

Lasso 205.983 0.337 11.079
(28.081) (0.109) (1.975)

MTLasso 213.398 0.310 11.177
(31.025) (0.136) (2.015)

MLP-4 204.104 0.338 10.323
(20.869) (0.126) (1.789)

ATAN-1 195.820 0.372 10.149
(25.991) (0.090) (1.392)

ATAN-2 198.320 0.356 10.185
(22.427) (0.122) (1.812)

• Introducing auxiliary task may not always work. The multi-task Lasso (i.e., MTLasso)

has worse performance than Lasso. One reason accountable for this case is that

MTLasso assumes that all tasks share the same feature structure. This is however

unlikely for LVMI and LVEDVI being regulated by the same set of features.

• ATAN-1 and ATAN-2 performs better than MTLasso, with margins 8% and 7% (MSE),

20% and 15% (EVS), 9% and 8.8% (MAE). This is possibly due to less restrictive

assumption of ATAN for defining “relevance" between two targets: ATAN conceptually

capture the “relevance" by learning feature representations shared by tasks. This
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implies that effectively modeling task relevance is an integral part under the multi-

task learning.

• The explained variance score (EVS) are overall low on the testing data. This is be-

cause that EVS is very sensitive to bad predictions, and indeed all models fail to

make good predictions for some samples. Fig. 7 shows the histogram of LVMI.

The histogram implies data might be generated from a multi-modal distribution and

methods hence fail to model the local data structure when not enough data is pre-

sented.

By examining the predictive performance, we find that predictions often fail at the left

and right tails in the sample distribution (results not shown). Previous study ([49, 73]) has

discovered the correlation between LVMI and calcium metabolism and shown that patients

with LVH (i.e., large LVMI values) have significant higher serum calcium level than those

without LVH. For our dataset, we find that in the right tail of data distribution (LVMI value

> 120), correlation between calcium level and LVMI is 0.79 and the two-tail correlation

test is significant with p-value = 0.0004. However, correlation between calcium and LVH is

0.006 in the entire dataset, and -0.100 for LVMI < 120. This implies that LVH prevalence

is different among different patient subgroups, and predictive models may fail to capture

the disparities when we only have limited amount of data.

Using demographics and lab results only As we see from Table 12, many features

are functional measures of the cardiovascular system. However in practice, much previous

study has focused on the relations between LVMI and lab results along with demograph-

ics, as these relations are more informative on the disease progression and often readily
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Table 15: Predictive performance along with standard deviations on the testing data. Only
demographics and lab results are used as input features. For MSE and MAE, smaller is
better; for EVS, larger is better.

Method MSE EVS MAE

KNN 298.568 -0.011 10.874
(51.941) (0.151) (2.007)

RF 255.045 0.123 10.029
(31.077) (0.197) (0.826)

SVR 281.800 0.057 10.023
(44.624) (0.014) (0.949)

Ridge 288.446 0.001 10.350
(54.822) (0.327) (1.488)

Lasso 253.616 0.137 9.322
(29.377) (0.143) (1.048)

MTLasso 252.770 0.142 9.231
(34.322) (0.128) (1.186)

MLP-4 243.327 0.172 9.290
(30.834) (0.146) (1.668)

ATAN-1 238.585 0.191 9.017
(29.211) (0.124) (1.638)

ATAN-2 237.482 0.195 9.172
(31.289) (0.127) (1.658)

available in clinical practice. In this section we hence exclude features that are functional

measures for the cardiovascular system and only use demographics and lab results as the

input features, resulting in 34 features remain in the experiment. We follow the same

experiment procedure as in the previous section and results are reported on 10 runs.

Table 15 shows the performance only using lab results and demographics. We see

that neural network models (MLP-4, ATAN-1 and ATAN-2) have comparable performances

and are better than other methods, implying that capturing high-level information would

benefit predictive modeling. Comparing with Table 14, predictive performances overall

degrade. This is possibly due to that functional measures are expected to be more infor-
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Figure 8: Top-20 important features for the complete set of features. Auxiliary target: (a)
LVEDVI (b) posterior wall thickness.
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Figure 9: Top-15 important features for only lab results as features. Auxiliary target: (a)
LVEDVI (b) posterior wall thickness.

mative for predicting LVMI.

Interpreting ATAN via Analyzing Weights Interpretability is as important as accuracy

in clinical research. In this section, we use the heuristic approach proposed in Section 4.3.3
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to calculate the contributions of features to targets, from which we can find risk factors for

better understanding of disease progression.

Fig. 8 shows the top-20 features using the complete feature set. From the table, sex

is indeed an important predictor: sample means of LVMI is 85.21 for female, and 95.78

for male; the two-sample t-test shows that the difference between female and male is

significant with p-value less than 0.0001. Aside from sex (which already is known to

be a key determinant of LVMI), several features with significant contributions are cardiac

measures, such as ejection duration, LV ejection fraction. This is intuitive as heart structure

and function are inherently related.

Fig. 9 presents the top-15 features out of demographics and lab results. We see from

the figure that both systolic and diastolic blood pressure contributes most for predicting

LVMI. The relationship between hypertension and LVH was the basic premise of this work,

and the fact that elevated blood pressure corresponds with LVMI is not surprising [22].

However, our interest in this modeling exercise was to see if ATAN, could identify more

subtle associations. Indeed, other contributory features from lab results were identified

including renin, potassium, vitamin D, calcium, parathyroid hormone, creatinine et al.

These top-ranked features accord with previous studies ([28, 49, 112]), supporting that

this analysis of feature contribution through weight propagation provides a heuristically

reasonable approach for interpreting DNN models.

4.4 Proposed DMNN

4.4.1 Deep Mixture of Neural Networks (DMNN)

DMNN Structure Although existing DNN models achieve state-of-art predictive perfor-

mance, they don’t explicitly take into considerations the heterogeneity in patient health
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Figure 10: Deep neural network models FNN and denoise autoencoder based on FNN.

conditions (e.g subgroup structure), which could potentially hamper the model interpre-

tation. However, determining patient subgroups usually require domain knowledge in the

medical science which may not always be available for complex data. Hence, the goal of

DMNN is not only to achieve comparable or better predictive performance but also enable

the discovery of patient subgroups. In DMNN, the patient subgroups are defined that share

the same functional input-output relations.

One challenge remaining in the partition of patient subgroups is determining which

subgroup each patient belongs to. As such membership indicators can be viewed as latent

variables in the modeling process, inspired by the classic mixture of experts and the recent

deep unsupervised model, we use a DNN to learn feature representations from the input

and then predict the membership indicator using softmax (e.g gating) based on the feature

representations (termed as embedding network with gating, ENG). The learned features

are then fed into multiple FNNs for prediction. However, the importance of those FNNs

is gated by the membership indicator in the final loss function (termed as local predictive

network, LPN). As such, patients with similar gating patterns are grouped and the FNN

can capture the “local" input-outcome functional relation. Figure 11 displays an overview
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of DMNN structure.

Mathematically, for each training example (x, y), ENG in DMNN outputs the feature

representation h and a vector of gating values g:

h, g = ENG(x).

The each local predictive network LPNi makes prediction ŷi and we obtain its respect loss

function Li:

ŷi = LPNi(h)

Li(x) = f(ŷi, y), i = 1, · · · , K

where f is the loss function: squared error f(ŷ, y) = (ŷ − y)2 for regression and cross-

entropy f(ŷ, y) = −(y log ŷ + (1− y) log ŷ)) for classification.

The final loss function for training example x is the sum of loss functions of all K LPNs,

weighted by the gating value g = (g1, · · · , gk):

Lfinal(x) =
K∑
i=1

giLi(x). (4.9)

By minimizing the final loss, model parameters are learned when the loss function con-

verges to a (local) minimum. Note that K is treated as hyperparameter and the optimal K

is selected via cross-validation or validation data.

Subgroup identification in DMNN In DMNN framework, subgroups will be identified

as the set of patients that share the similar functional input-output relation. In other
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Figure 11: Overview of DMNN with ENG and and K LPNs.

words, clinical outcomes for patients within the same subgroup should be predicted well

by some LPN. Intuitively, this implies that we can group patient according to the gating

values g: patient x belongs to subgroup k where k = arg maxk{gi : i = 1, · · · , gK}, as a

better LPN should have a larger gating value. Indeed, we can perform analysis similar to

mixture of experts on the final loss function to see the rationale behind DMNN’s subgroup

identification.

From the final loss function Eq. (4.9), we see that each LPN is encouraged to fit each

training sample well, e.g., low error value (though weighted differently). If one LPN

captures the input-outcome relation well and gives less error than other LPNs, ENG in

DMNN is encouraged to produce larger gating value for that specific LPN (simultaneously

reduce other gating values due to the softmax function). Moreover, this will make the

ENG embed similar patients closer to each other in the late feature space. Consequently,

those patients will exhibit similar gating values. With the clustering effect of ENG, DMNN

is capable of discovering patient subgroups.

4.4.2 Model Interpretation by Knowledge Distillation

Model interpretability is as important as accuracy in clinical research. While deep learn-

ing models are generally difficult to interpret, recent progress in knowledge distillation[51,
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Table 16: Feature statistics (mean and standard deviations for continuous features, per-
centage for categorical features.). In the table, AA represents African Americans, F female
and P positive.

Demo Stats Vitals Stats Labs Stats Hemodynamics Stats

Age 59.15 Initial SBP 153.27 Troponin (P) 162 DBP 75.87
(12.51) (33.06) (48.4%) (17.51)

Race (AA) 297 Initial DBP 91.23 NP 3663.42 SBP 127.86
(88.7%) (20.73) (6388.41) (29.572)

Gender (F) 174 Initial HR 91.56 Sodium 138.81 MAP 94.98
(51.8%) (18.71) (4.15) (21.01)

Weight 99 RR 20.66 BUN 27.00 dP/dt 602 .90
(30.92) (4.75) (20.46) (258.89)

Height 172.85 OS 96.30 Creatinine 2.04 SVR 1615.43
(28.37) (4.55) (2.47) (752.03)

Temperature 97.95 eGFR 60.48 SV 66.05
(0.67) (31.20) (26.78)

Hemaglobin 11.78 HR 85.74
(2.35) (15.01)

CO 5.55
(2.16)

2] for DNNs enables us to understand what DNNs learn from the data. The main idea is

that after an accurate but complex DNN (teacher model) is trained, the knowledge can be

transferred to train another simpler model (student model) by predicting the soft labels

predicted by the teacher. Training with soft labels is an implicit regularization for the stu-

dent model with which it can achieve as good performance as the teacher model [2, 10].

If the student model that learns knowledge from the teacher DNN model is interpretable,

we can then interpret the DNN through the student model. For our DMNN model, we take

the approach developed in Che et.al[10] for interpretation. We first train DMNN as the

teacher model and then train the interpretable gradient boosting machine for regression

(GBR) as the student model to mimic DMNN’s predictive behavior. GBR uses the probabil-

ity generated by DMNN as target. For each subgroup identified by DMNN, we train GBR

and use the feature importance in GBR to identify important risk factors for that subgroup.
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Figure 12: Box plot for AHF v.s non-AHF. It can be observed that AHF and non-AHF pa-
tients share some similar feature characteristics in hemodynamic features, yet AHF group
exhibits larger variance. This implies large heterogeneity in patient health conditions for
AHF onset.

4.4.3 Results and Discussions

In this section, we apply DMNN on a clinical dataset collected from patients present-

ing signs and symptoms of acute heart failure (AHF) in the emergency department (ED)

of three urban academic medical centers in Detroit. The task is to predict whether a pa-

tient ultimately will be assigned a diagnosis of AHF. Our goal is two-fold: (1) accurately

predict the risk of AHF, so that further actions can be effectively taken to avoid adverse

outcomes; (2) identify the associated risk factors within the patient subgroups to promote

the understanding of health disparities.

Data information and preprocessing The data contain health records for 335 patients

with suspected AHF, among which 78% (261/335) of patients actually have AHF onset.

There are 26 features in the data, including 5 demographics (age, race, gender, weight

and height), 6 vital signs (initial SBP, initial DBP, initial heart rate (HR), respiratory rate

(RR), oxygen saturation (OS) and temperature) when presenting in ED, 7 initial lab results

(troponin, natriuretic peptide (NP), sodium, BUN, creatinine, eGFR and Hemaglobin), and

8 hemodynamic features measured using a non-invasive device (SBP, DBP, MAP, dP/dt,
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SVR, SV, HR and CO). Table 16 shows the details of feature characteristics. Figure 12 is

the boxplot of hemodynamic features for comparing AHF against non-AHF patients. From

the figure, we can see that while non-AHF and AHF patients share some similar statistics

(such as median value, 25th and 75th quantiles), AHF patients show larger variance in

hemodynamic features compared with non-AHF patients . This observation implies the

existence of large heterogeneity in health conditions among patients in the ED who present

with suspected AHF.

For missing values in the dataset (missingness is about 0.6%), we impute them with

mean values for continuous features and the majority value for categorical features. Note

that the imputation in our experiments is based on training data to prevent possible in-

formation leak to testing data (after train/test split). As features have different scales, we

also perform data normalization for features to have zero mean and unit variance.

Implementation and evaluation details We implement DMNN using Pytorch. In the

experiment, DMNN is of depth 4, consisting of the input layer, two hidden layers of size

40 and 20 respectively which act as the ENG part in DMNN and multiple output layers;

the embedding of the 2nd hidden layer will be fed into the softmax layer to obtain gating

values and LPNs for predictions which are linear models. Sigmoid function is used in

hidden layers for non-linear activation. By initial experiments on the number K of LPNs,

we found K = 2 work well with this relatively small dataset. Since deep neural network

can be easily overfitted and the gating mechanism may degenerate (i.e model may only

use one LPN), we apply unsupervised learning techniques to initialize the ENG in DMNN.

We first train a 5-layer (dimension 26-40-20-40-26) denoise autoencoder (DAE) and use

the encoder to initialize embedding part of ENG; after DAE is trained, we extract the
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bottleneck feature representations and use K-means for clustering; we then train the ENG

to predict the cluster labels. With ENG initialized, DMNN is trained via stochastic gradient

descent in conjunction with L2 regularization.

We test different machine learning models for performance evaluation. Those baseline

models include logistic regression (LR), decision trees (DT), K-nearest neighbor (KNN),

gradient boosting machine (GBM), feedforward neural network(FNN) of the same hidden

dimensions, random forest (RF). We use Python scikit-learn package for model imple-

mentation. In the experiment, training data are divided into training/testing by a split

85%/15%. Within the training data, we further split out 10% as validation data for se-

lecting model parameters. The evaluation metrics are the area under receiver operating

characteristic curve (AUROC) and area under precision-recall curve (AUPRC). We repeat

the train/test procedure 5 times and the average predictive performance on the testing

data is reported.

Predictive performance Table 17 shows the predictive performance on the testing data.

We see from the table that DMNN performs better than other baseline models. As shown

in Figure 13, patients can be clustered into two subgroups. In contrast with baselines

that only build a global predictive model for all patients, DMNN builds a local predictive

model for each patient subgroup that is able to capture the local functional input-output

relations, resulting in performance gain. We also observe that all models achieve good

performance in terms of AUPRC and relatively worse performance for AUC. This is due

to that the majority of the patients (78%) have AHF onset, and all models can predict

AHF well at the cost of misclassifying non-AHF patients as AHF. From Figure 13, we see

that there is a large overlap between AHF and non-AHF patients; from Figure 12, non-



77

Table 17: Average AUC and AUPRC on testing data along with standard deviations.
LR GBM DT KNN FNN RF DMNN

AUC 0.69 0.70 0.58 0.66 0.69 0.71 0.74
(0.09) (0.07) (0.08) (0.04) (0.05) (0.06) (0.07)

AUPRC 0.88 0.90 0.81 0.85 0.89 0.90 0.92
(0.05) (0.03) (0.03) (0.04) (0.02) (0.01) (0.03)

(a) (b)

Global model

Local model 1

Local model 2

(c)

Figure 13: 2D t-SNE plot. (a) Raw input features; (b) feature embedding from FNN;
(c) feature embedding from DMNN; DMNN feature embedding exhibits two patient sub-
groups; a local model is fitted for each subgroup.

AHF and AHF patients have similar characteristics for hemodynamic features. Those two

observations imply that patients in ED with possible AHF are similar, yet those with the

highest likelihood of diagnosis are rather different. This heterogeneity makes it difficult

for models to differentiate AHF and non-AHF patients effectively, leading to a lower AUC

score compared with AUPRC score.

Feature analysis We interpret the DMNN model via knowledge distillation as introduced

in Section 4.4.2. To do so, the interpretable gradient boosting machine for each patient

subgroup is trained to learn the input-output relation captured by DMNN. As GBM mimics

the predictive behavior of DMNN, we can then identify risk factors and their dependence

relations to the onset of AHF. Figure 14 shows the top8 features that are important for

predicting AHF. We see that both DMNN and GBM share some features such as blood
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pressure (initial SBP, initial DBP, SBP and DBP), indicating BP is a universal risk factor

for AHF. As shown in Table 16, blood pressure level (initial SBP 153.27mm Hg, initial

DBP 91.23mm Hg, SBP 127.86mm Hg and DBP 75.87mm Hg) indicates that patients with

elevated values are more likely to be diagnosed with AHF. Comparing DMNN with GBM,

important risk factors for DMNN are rather different from those of GBM. For example,

natriuretic peptide (NP) identified in GBM is the single most important risk factor for the

diagnosis of AHF. However in DMNN, NP is only important in Subgroup 2 and not very

important in terms of predictive power in Subgroup 1. While NP level is informative in

the diagnosis of heart failure, the difference in NP importance in those models possibly

implies large disparity in the development of AHF. Within DMNN, both subgroups also

share MAP as an important feature yet have subgroup specific features. In Subgroup 1, SV,

dP/dt and HR are important hemodynamic features whereas in Subgroup 2, SVR and RR

are identified important.

Discussions To further understand the dependence relation between features and AHF in

patient subgroups, the partial dependence plots (PDP) for five important features (initial

DBP, MAP, RR, SV, SVR) in either Subgroup 1 or 2 are shown in Figure 15. Both subgroups

follows a similar dependence relation for initial DBP and MAP: as their level increases,

the risk of AHF also increases. But for RR, SV and SVR, the dependence relation differs.

In Subgroup 2, RR and SVR have a positive dependence relation on AHF onset while no

such relation in Subgroup 1. In Subgroup 1, patients are at high risk of AHF if SV level

is too low or too high; whereas in Subgroup 2, SV is not very predictive for AHF. As

DMNN performs well in AHF prediction as shown in Table 17, the difference between two

subgroups provides useful information for clinicians in disease diagnosis.
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(a1) Subgroup 1 (a2) Subgroup 2

(a) DMNN with group stratification (b) GBM w/o group stratification

Entire cohort

Figure 14: Top 8 important features.

Initial DBP MAP RR SV SVR

Figure 15: Partial dependence plot for important features for Subgroup 1 or 2.

4.5 Conclusion

In this chapter, we present two novel DNN predictive models, ATAN and DMNN. ATAN

introduces multi-task learning as a regularization method. ATAN learns high-level latent

information from low-level input features, as well as flexibly leveraging other informa-

tion contained in the clinically relevant targets. Our experiments with one auxiliary target

show that DNNs can offer great improvements for predictive modeling in clinical research

when only limited labeled data are available. Moreover, ATAN can be easily extended to

multiple auxiliary targets. However, ATAN does not exploit the information from the unla-

beled data. Hence, for future work, we plan to develop DNN models combining multi-task

learning paradigm with semi-supervised learning, which fully exploits different sources

of information for better predictive performance. DMNN identifies patient subgroup via

gating mechanism that aims at capturing similar functional input-output relations among
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patient population. With subgroup discovery, DMNN can identify subgroup-specific risk

factors (in terms of AHF prediction) and such granularity can potentially help clinicians

understand subgroup differences, which is an advantage of DMNN compared with tradi-

tional “one-size-fits-all" approaches. Experiments on an AHF prediction task show that our

proposed method can achieve state-of-art performance and discover risk factors that might

be missed by traditional methods. One limitation of this work is that DMNN is not able

to characterize patient subgroup (i.e., phenotyping). Hence, for future works, we will ex-

pand our work to incorporate information from multimodal data such as medical images,

clinical notes and time series data to further improve DMNN for better characterization of

patient subgroups.
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CHAPTER 5 IN-NEGATIVE-CLASS REWEIGHTED LOGISTIC LOSS

5.1 Introduction

Deep convolutional neural networks (CNNs) trained with logistic or softmax losses

(LGL and SML respectively for brevity), e.g., logistic or softmax layer followed by cross-

entropy loss, have achieved remarkable success in various visual recognition tasks [70, 68,

47, 130, 141]. The success mainly accredits to CNN’s merit of high-level feature learning

and loss function’s differentiability and simplicity for optimization. When training data

exhibit class imbalances, training CNNs with gradient descent is biased towards learning

majority classes in the conventional (unweighted) loss, resulting in performance degrada-

tion for minority classes. To remedy this issue, the class-wise reweighted loss is often used

to emphasize the minority classes that can boost the predictive performance without intro-

ducing much additional difficulty in model training [20, 54, 94, 152]. A typical choice of

weights for each class is the inverse-class frequency.

A natural question then to ask is what roles are those class-wise weights playing

in CNN training using LGL or SML that lead to performance gain? Intuitively, those

weights make tradeoffs on the predictive performance among different classes. In this

chapter, we answer this question quantitatively in a set of equations that tradeoffs are on

the model predicted probabilities produced by the CNN models. Surprisingly, effectiveness

of the reweighting mechanism for LGL is rather different from SML. Here, we view the

conventional (e.g., no reweighting) LGL or SML as a special case where all classes are

weighted equally.

As these tradeoffs are related to the logistic and softmax losses, answering the above

question actually leads us to answering a more fundamental question about their learning
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behavior: what is the property that the decision boundary must satisfy when models

are trained? To our best knowledge, this question has not been investigated systematically,

despite logistic and softmax losses are extensively exploited in deep leaning community.

While SML can be viewed as a multi-class extension of LGL for binary classification,

LGL is a different learning objective when used in multi-class classification [5]. From the

perspective of learning structure of data manifold as pointed out in [3, 5, 24], SML treats

all class labels equally and poses a competition between true and other class labels for

each training sample, which may distort data manifold; for LGL, the one-vs.-all approach

it takes avoids this limitation as it models each target class independently, which may

better capture the in-class structure of data. Though LGL enjoys such merits, it is rarely

adopted in existing CNN models. The property that LGL and SML decision boundaries

must satisfy further reveals the difference between LGL and SML (see Eq. (5.9), (5.10)

with analysis). If used for the multi-class classification problem, we can identify two is-

sues for LGL. Compared with SML, LGL may introduce data imbalance, which can degrade

model performance as sample size plays an important role in determining decision bound-

aries. More importantly, since the one-vs.-all approach in LGL treats all other classes as the

negative class, which is of a multi-modal distribution [78, 80], the averaging effect of the

predicted probabilities of LGL can hinder learning discriminative feature representations

to other classes that share some similarities with the target class.

5.2 Related Work

With recent explosion in computational power and availability of large scale image

datasets, deep learning models have repeatedly made breakthroughs in a wide spectrum of

tasks in computer vision [70, 37]. Those advancements include new CNN architectures for
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image classification[68, 47, 130, 141], objective detection and segmentation [121, 122],

new loss functions [24, 165] and effective training techniques to improve CNN perfor-

mance [131, 58].

In those supervised learning problems, CNNs are mostly trained with loss functions

such as LGL and SML. In practice, class imbalance naturally emerges in real-world data

and training CNN models directly on those datasets may lead to poor performance. This

phenomenon is referred as the imbalanced learning problem [46]. To tackle this problem,

cost-sensitive method [29, 166] is the widely-adopted approach in current training prac-

tices as they don’t introduce any obstacles in the backpropagation algorithm. One of the

most popular methods is class-wise reweighting loss function based on LGL and SML. For

example, [54, 152] reweight each class by its inverse-class frequency. In some long-tailed

datasets, a smoothed version of weights is adopted [94, 97], which emphasizes less on

minority classes, such as the square root of inverse-class frequency. More recently, [20]

proposed a weighting strategy based on the calculation of effective sample size. In the

context of learning from noisy data, [165] provides analysis on the weighted SGL showing

close connection to the mean absolute error (MAE) loss. However, what role class-wise

weights play in LGL and SML is not explained in previous works. In this chapter, we

provide a theoretical explication on how the weights control the tradeoffs among model

predictions.

If we decompose the multi-class classification as multiple binary classification sub-tasks,

LGL can also be used as the objective function via one-vs.-all approach [45, 5], which is

however rarely adopted in existing works of deep learning. Motivated to understand class-

wise reweighted LGL and SML, our analysis further leads us to a more profound discovery
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in the properties of decision boundaries for LGL and SML. Previous work in [24] showed

that the learning objective using LGL is quite different from SML as each class is learned

independently. They identified the negative class distraction (NCD) phenomenon that

might be detrimental to model performance when using LGL in multi-class classification.

From our analysis, the NCD problem can be partially explained that LGL treats the negative

class (e.g., non-target classes) as a single class and ignores its multi-modality. If there

exists one non-target class that share some similarity with the target class, CNN trained

with LGL may make less confident predictions for that non-target class (e.g., probability

of belonging to the negative class is small) as its predicted probabilities are averaged out

due to other non-target classes with confident predictions. Consequently, samples from

that specific non-target class can be misclassified into the target class, resulting in large

predictive error.

5.3 Analysis on LGL and SML

In this section, we provide a theoretical explanation for the class-wise weighting mech-

anism and depict the learning property of LGL and SML losses.

Notation Let D = {(xi, yi)}Ni=1 be the set of training samples of size N , where xi ∈ Rp is

the p-dimensional feature vector and yi = k(k = 0, · · · , K − 1) is the true class label, and

Sk = {(xi, yi) : yi = k} the subset of D for the k-th class. The bold yi = (y0
i , · · · , yK−1

i ) is

used to represent the one-hot encoding for yi: yki = 1 if yi = k, 0 otherwise. Nk = |Sk|(k =

0, · · · , K − 1) is used to represent sample size for the k-th class and hence
∑

kNk = N .

The maximum size is denoted as Nmax = maxk=0,··· ,K−1(Nk).
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5.3.1 Preliminaries

For classification problem, the probability for a sample x belonging to one class is

modeled by logistic (e.g., sigmoid) for binary classification

p(y = 1|x;θ) =
1

1 + exp(−z)
,

p(y = 0|x;θ) = 1− p(y = 1|x),

and by softmax for multi-class classification

p(y = k|x;θ) =
exp(zk)∑K−1
j=0 exp(zj)

,

where all z’s are the logits for x modeled by CNN with parameter vector θ. It is worth

noting that softmax is equivalent to logistic in binary classification as can be seen from

p(y = 1|x) =
exp(z1)

exp(z0) + exp(z1)
=

1

1 + exp(−(z1 − z0))
.

Hence, without loss of generality, we write class-wise reweighted LGL (K = 2) and

SML (K ≥ 3) in a unified form as follows

L(θ) = −
K−1∑
k=0

λk
∑
ik∈Sk

log fk(θ;xik) = −
K−1∑
k=0

λkLk(θ), (5.1)

where each fk(θ;xi) = p(yi = k|xi) is the CNN predicted probability of sample xi belong-

ing to the k-th class; λs are weight parameters to control each class’s contribution in the
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loss. When all λs are equal, L(θ) is the conventional cross-entropy loss and minimizing

it is equivalent to maximizing likelihood. If the training data are imbalanced, a different

setup of λs is used, usually classes with smaller sizes are assigned with higher weights.

Generally, λs are treated as hyperparameters and selected by cross-validation.

We emphasize here that using logistic function for multi-class (K ≥ 3) is a different

learning objective from softmax in this case as the classification problem is essentially

reformulated as K binary classification sub-problems.

5.3.2 Key Equations for Weights λs

Assume that CNN’s output layer, after convolutional layers, is a fully connected layer

of K neurons with bias terms, then the predicted probability for sample x is given by the

softmax activation:

fk(x) =
exp(Wkhx + bk)∑K
j=1 exp(W jhx + bj)

(k = 0, · · · , K − 1), (5.2)

where hx is the feature representation of x extracted from convolutional layers, W k and

bk are parameters of the k-th neuron in the output layer. For notational simplicity, we have

dropped θ in fk(x).

After CNN is trained, we assume that the reweighted SML L(θ) is minimized to local

optimum θ∗. By optimization theory, a necessary condition is that the gradient of L(θ) is

zero at θ = θ∗5:

∂L

∂θ
= 0 ⇐⇒

K∑
k=1

λk
∂Lk
∂θ

= 0. (5.3)

We specifically consider L1(θ) for the 1-st class with respect to one component η of θ. Then

5More strictly, zero is in the subgradient of L(θ) at θ∗. But this doesn’t affect the following analysis.
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with chain rule, the necessary condition above gives:

λ1
∂L1

∂η
+

K∑
k=2

λk
∂Lk
∂η

= 0 ⇐⇒

λ1

∑
i1∈S1

1

f1,i1

∂f1,i1

∂η
+

K∑
k=2

λk
∑
ik∈Sk

1

fk,ik

∂fk,ik
∂η

= 0,

(5.4)

where we use fj,ik = fj(xik) given by Eq. (5.2).

Let σ(z) be the softmax function of z = (z1, · · · , zK) with each component σ(zk) =

exp(zk)/
∑

i exp(zi), its derivative is

∂σ(zk)

∂zi
=


σ(zk)(1− σ(zk)), i = k

−σ(zk)σ(zi), i 6= k.

(5.5)

Denoting aj,ik = Wjhxik + bj as the j-th logit in Eq. (5.2) for sample xik , then fj,ik =

σ(aj,ik)(j = 0, · · · , K − 1). Again with chain rule and Eq. (5.5):

∂fk,ik
∂η

=
K∑
j=1

∂fk,ik
∂aj,ik

∂aj,ik
∂η

= fk,ik(1− fk,ik)
∂ak,ik
∂η

− fk,ik
∑
j 6=k

fj,ik
∂aj,ik
∂η

.

(5.6)

Since Eq. (5.4) holds valid for any component η of θ, we specifically consider the case

when η = b1. Therefore we have ∂a1,ik/∂b1 = 1 and ∂aj,ik/∂b1 = 0(j = 2, · · · , K). Then Eq.

(5.6) becomes:

∂fk,ik
∂b1

=


f1,i1(1− f1,i1), k = 1

−fk,ikf1,ik , k 6= 1.

(5.7)
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Plug Eq. (5.7) back into Eq. (5.4) and rearrange the terms, we have

λ1

∑
i1∈S1

(1− f1,i1) =
K∑
k=2

λk
∑
ik∈Sk

f1,ik . (5.8)

With the same calculations, we can obtain other K−1 similar equations, each of which

corresponds to one class. Remember fj,ik is the probability of sample xik from the k-th

class being predicted into the j-th class, and Eq. (5.8) reveals the quantitative relation

between weights λs, model predicted probabilities and training samples. Notice that CNN

is often trained with L2 regularization to prevent overfitting. If the bias term bks are not

penalized, Eq. (5.8) still holds valid. Another possible issue is that the calculation relies

on the use of bias terms bk in the output layer. As using bias increases CNN’s flexibility and

is not harmful to CNN performance, our analysis is still applicable to a wide range of CNN

models trained with cross-entropy loss.

We observe in Eq. (5.8),
∑

i1∈S1
(1− f1,i1)/N1 (approximately) represents the expected

probability of CNN incorrectly predicting a sample of class 1 and
∑

ik∈Sk f1,ik/Nk the ex-

pected probability of CNN misclassifying a sample of class k(k 6= 1) into class 1. If we

assume that the training data can well represent the true data distribution that testing

data also follow, the learning property of trained CNN shown in Eq. (5.8) can be general-

ized to testing data.

More specifically, since the CNN model is a continuous mapping and the softmax output

is bounded between 0 and 1, by the uniform law of large numbers [101], we have the
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following system of K equations once CNN is trained:



λ0N0(1− p̄0→0) ≈
∑

k 6=0 λkNkp̄k→0

...

λK−1NK−1(1− p̄K−1→K−1) ≈
∑

k 6=K−1 λkNkp̄k→K−1,

(5.9)

where for indices i and j, p̄i→j represents the expected probability of CNN predicting a

sample from class i into class j:

p̄i→j = Ex∼P (x|y=i)fj(x),

where P (x|y = i) is the true data distribution for the i-th class.

Binary Case with LGL For binary classification problem (K = 2), Eq. (5.9) gives us the

following relation about CNN predicted probabilities:

1− p̄0→0

p̄1→0

≈ λ1N1

λ0N0

. (5.10)

• In the conventional LGL where each class is weighted equally (λ0 = λ1), Eq. (5.10)

becomes 1 − p̄0→0 = N1p̄1→0/N0. If data exhibit severe imbalance, say N0 = 10N1,

then we must have (p̄1→0 < 1)

p̄0→0 = 1− p̄1→0

10
> 0.9.

If t = 0.5 is the decision making threshold, this implies that the trained neural net-
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work can correctly predict a majority class (e.g., class 0) sample, confidently (at

least) with probability 0.9, on average. However, for minority class, the predictive

performance is more complex which depends on the trained model and data distri-

bution. For example, if two classes can be well separated and the model made very

confident predictions, say p̄0→0 = 0.98, then we must have p̄1→1 = 0.8 for the minor-

ity class, implying a good predictive performance on class 1. If p̄0→0 = 0.92, then

we have p̄1→1 = 0.2. This means the predicted probability of a minority sample be-

ing minority is 0.2 on average. Hence, the classifier must misclassify most minority

samples (0.2 < 0.5), resulting in very poor predictive accuracy for minority class.

• If LGL is reweighted using inverse-class frequencies, λ0 = 1/N0 and λ1 = 1/N1,

the equation above is equivalent to p̄0→0 = 1 − p̄1→0 = p̄1→1. Since predictions are

made by y = arg maxi fi(x) and f1(x) > f0(x) means f1(x) > 0.5, we can have a

deterministic relation: if either class 0 or 1 can be well predicted (e.g., p̄i→i > 0.5),

reweighting by class inverse frequencies can guarantee performance improvement

for the minority class. However, the extent of “goodness" depends on the separability

of the underlying data distributions of the two classes.

Simulations for Eq. (5.10) We conduct simulations under two settings for checking Eq.

(5.10). The imbalance ratio is set to 10 in training data (N0 = 1000, N1 = 10000), testing

data size is (1000, 1000); both training and testing data follow the same data distribution.

As the property only relies on the last fully connected hidden layer, we use the following

setup:

• Sim1: P1(x|y = 1) = N (−1.5, 1) + U(0, 0.5), P2(x|y = 0) = N (1.5, 1) + U(−0.5, 0).
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λ0
1
2

N0

N0+N1

2N0

(2N0+N1)

RHS 10 1 0.5

LHS (Sim1) 10.05 1.00 0.50
(1.13) (0.09) (0.04)

LHS (Sim2) 10.12 1.01 0.50
(0.67) (0.05) (0.03)

Table 18: Simulation results (along with standard deviation) for Eq. (5.10) over 100 runs,
λ1 = 1 − λ0. RHS represents theoretical value on the right-hand side of (5.10); LHS the
simulated value on the left hand side.

Logistic regression is fitted. N and U represents normal and uniform distribution

respectively.

• Sim2: P1(x|y = 1) = N (µ1,σ1), P0(x|y = 0) = N (µ0,σ0), where µ1 = (0, 0, 0),

µ0 = (1, 1, 1), σ1 = 1.2I, σ0 = I. A one-hidden-layer forward neural network of

layer size (3, 10, 1) with sigmoid activation.

Table 18 shows simulation results under three λ settings. We see from the Table that sim-

ulated values match with the theoretical values accurately, demonstrating the correctness

of Equation (5.10).

Multi-class Case with SML Because
∑

k p̄i→k = 1 and Eq. (5.9) has K(K − 1) variables

with only K equations, we can’t exactly solve it quantitatively for a relation among those

p̄i→j ’s when K > 2. For the special case when weights are chosen as the inverse-class

frequencies λk = 1/Nk, considering for class 1, we have (1 − p̄1→1) ≈
∑

k 6=1 p̄k→1. Multi-

class classification (K > 2) does not have a deterministic relation as in the binary case,

as predictions are made by y = arg maxi fi(x) and we don’t have a decisive threshold for

decision making (like the 0.5 in binary case). Our findings match the results in [166]

in the sense that class-wise reweighting for multi-class is indeterministic. However, our

results are solely based on the mathematical property of the backpropagation algorithm
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from optimization theory whereas [166] is based on decision theory.

Learning property of LGL and SML As the class-wise reweighting mechanism is explained

in Eq. (5.9), those equations also reveal the property of decision boundaries for LGL and

SML. For comparison, the decision boundary of support vector machine (SVM) [19] is

determined by those support vectors that maximize the margin and those samples with

larger margin have no effects on the position of decision boundary. On the contrary, all

samples have their contribution to the decision boundary in LGL and SML so that their

averaged probabilities that the model produces must satisfy Eq. (5.9). In particular for

the binary case, we can see that if classes are balanced, the model must make correct pre-

dictions with equal confidence for the positive and negative classes, on average; whereas

for imbalanced data, the decision boundary will be pushed towards the minority class in a

position with Eq (5.10) always maintained. Another observation is that if the expectation

of model predicted probabilities doesn’t match with its mode (e.g skewed distribution),

the magnitude of tradeoff between performance of the majority and minority class de-

pends on the direction of skewness. If the distribution of the majority class skews away

from the decision boundary, upweighting minority class will boost model performance at

a small cost of performance degradation for the majority class than if it skews towards the

decision boundary. This implies that estimating the shape of data distribution in the la-

tent feature space and choosing the weights accordingly would be very helpful to improve

model overall performance.

5.4 Proposed Approach: In-negative Class Reweighted LGL

In this section, we focused on LGL for multi-class classification via one-vs.-all approach.

In addition to the theoretical merits of LGL mentioned in the introduction section that LGL
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is capable of better capturing the structure of data manifold than SML, the guarantee of

achieving good performance after properly reweighting (e.g., Eg.(5.10)) is also desirable

as the one-vs.-all approach naturally introduces data imbalance issue.

Multi-modality Neglect Problem In spite of those merits of LGL, it also introduces the

multi-modality neglect problem for multi-class classification. Since the expectation of

model predicted probability must satisfy Eq (5.10) for LGL, the averaging effect might

be harmful for model performance. In the one-vs.-all approach, the negative class con-

sists of all the remaining non-target classes, which follows a multi-modal distribution (one

modality for each non-target class). LGL treats all non-target classes equally in the learning

process. If there is a hard non-target class that shares non-trivial similarity with the tar-

get class, its contribution in LGL might be averaged out by other easy non-target classes.

In other words, those easy non-target classes (e.g., correctly predicted as the negative

class with high probabilities) would compensate the predicted probability of the hard non-

target class so that the probabilistic relation in Eq (5.10) is maintained. Consequently,

model could incorrectly predict samples from the hard non-target class into the target

class, inducing large predictive error for that class. This phenomenon is not desirable as

we want LGL to pay more attention on the separation of the target-class with that hard

class, meanwhile maintain the separation from the remaining easy non-target classes.

To this end, we propose an improved version of LGL to reweight each non-target class’s

contribution within the negative class. Specifically, for the target class k (e.g., positive

class, labeled as y = 1) and all non-target classes (e.g., negative class, labeled as y = −1),

a two-level reweighting mechanism is applied in LGL, which we term as in-negative-class
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reweighted LGL (LGL-INR):

LINR
k (θ) =− 1

Nk

∑
x∈Sk

log p(y = 1|x;θ)

−
K−1∑

j=0,j 6=k

λj
1

Nj

∑
x∈Sj

log(1− p(y = 1|x;θ)),

(5.11)

where p(y = 1|x;θ) is the predicted probability of sample x belonging to the positive class

and λj is the weight for class j as a sub-class of the negative class.

The first reweighting is at the level of positive vs. negative class. If we require
∑

j λj =

1, using inverse-frequencies will maintain the balance between the positive and negative

class, as one-vs.-all is likely to introduce class imbalance. The second level of reweighting

is within the negative class: we upweight the contribution of a hard sub-class by assigning

a larger λ, making LGL-IGR focus more on the learning for that class.

Choice of λs When there are a large number of classes, treating all λs as hyperparameters

and selecting the optimal values are not feasible in practice as we generally don’t have the

prior knowledge about which classes are hard. Instead, we adopt a strategy that assigns

the weights during the training process. For each non-target class j(j 6= k), let SMB
j be the

subset of Sj in the mini-batch, we use the mean predicted probability

p̄j =
1

|SMB
j |

∑
x∈SMB

j

p(y = 1|x,θ)

as the class-level hardness measurement. A larger p̄j implies class j is harder to separate



95

from the target class k. We then transform those p̄j ’s using softmax to get λj:

λj =
exp(βp̄j)∑
i 6=k exp(βp̄i)

,

where β ≥ 0 is the temperature that can smooth (0 ≤ β ≤ 1) or sharpen (β > 1) each

non-target class’s contribution [16]. LGL-INR adaptively shifts its learning focus to those

hard classes, meanwhile keep attentive on those easy classes. Note that this strategy only

introduces one extra parameter in LGL-INR.

With the competition mechanism imposed by
∑
λj = 1, LGL-INR can be viewed as

a smoothed learning objective between the one-vs.-one and one-vs.-all approach: when

β = 0, λj = 1/K − 1, all non-target classes are weighted equally, which is the in-negative-

class balanced LGL using inverse-class frequencies; when β is very large, λj concentrates

on the hardest class (e.g., λj ≈ 1) and LGL-INR approximately performs one-vs.-one clas-

sification. We don’t specifically fine-tune the optimal value of β and β = 1 works well in

our experiments.

5.5 Experiments

We evaluate LGL-INR on several benchmark datasets for image classification. Note that

in our experiments, applying LGL in multi-class classification naturally introduces data

imbalance which is handled in our LGL-INR formulation. Our primary goal here is to

demonstrate that LGL-INR can be used as a drop-in replacement for LGL and SML with

competitive or even better performance, rather than outperform the existing best models

using extra training techniques. For fair comparison, all loss functions are evaluated in the

same test setting. Code will be made publicly available after the reviewing process.
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Model Architecture

CNN2C CV(C20K5S1)-MP(K2S2)-
CV(C50K5S1)-MP(K2S2)-800-10

CNN5C
CV(C32K3S1)-BN-CV(C64K3S1)-BN-

CV(C128K3S1)-MP(K2S2)-CV(C256K3S1)-
BN-CV(C512K3S1)-MP(K8S1)-512-10

Table 19: CNN architectures used for MNIST-type datasets. C-channel represents number,
K-kernel size, S-stride, BN-batch normalization and MP-max pooling

Model Loss Dataset

MNIST FMNIST KMNIST

CNN2C
LGL 99.15 89.44 94.37
SML 99.09 91.15 95.13
LGL-INR 99.29 91.15 96.43

CNN5C
LGL 99.36 92.35 96.35
SML 99.47 93.15 96.39
LGL-INR 99.63 93.54 97.46

Table 20: Predictive top-1 accuracy rate (%) on the standard testing data of MNIST-type
datasets.

5.5.1 Experiment Setup

Dataset We perform experiments on four MNIST-type datasets, MNIST, Fashion-MNIST

(FMNIST) [158], Kuzushiji-MNIST (KMNIST) [17] and CIFAR10. FMNIST and KMNIST

are intended as drop-in replacements for MNIST which are harder than MNIST. Both

datasets are gray-scale images consisting of 10 classes of clothing and Japanese charac-

ter respectively. CIFAR10 consists of colored images of size 32× 32 from 10 objects.

Model setup We test three loss functions on each dataset with different CNN architectures.

For MNIST-type datasets, two CNNs with simple configurations are used. The first one

(CNN2C) has two convolution layers and the other one (CNN5C) has 5 convolution layers

with batch normalization [58]. For CIFAR10, we use MobilenetV2 [52] and Resnet-18 [48]

with publicly available implementations.
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Implementation details All models are trained with the standard stochastic gradient de-

scent (SGD) algorithm. The training setups are as follows. For MNIST-type data, the

learning rate is set to 0.01, the momentum is 0.5, batch size 64, number of epoch is 20.

We don’t perform any data augmentation. For CIFAR data, we train the models with 100

epochs and set batch size to 64. The initial learning rate is set to 0.1, and divide it by 10

at 50-th and 75-th epoch. The weight decay is 10−4 and the momentum in SGD is 0.9.

Data augmentation includes random crop and horizontal flip. We train all models without

pretraining on large-scale image data. Model performance is evaluated by the top-1 accu-

racy rate and we report this metric on the testing data from the standard train/test split of

those datasets for fair performance evaluation. For LGL-INR, we report the results using

β = 1.

5.5.2 Predictive Results

Table 20 and Table 21 shows the classification accuracy using LGL, SML and LGL-INR

on the MNIST-type and CIFAR10 dataset respectively. From the table, we can observe

that for all three loss functions, model with larger capacity yields higher accuracy. On

MNIST-type data, LGL yields overall poorer performance than SML. This is because in those

datasets, some classes are very similar to each other (like shirt vs. coat in FMNIST) and

the negative class consists of 9 different sub-classes. Hence the learning focus of LGL may

get distracted from the hard sub-classes due to the averaging behavior of LGL as shown in

Eq (5.9). However, SML doesn’t suffer this problem as all negative sub-classes are treated

equally. On CIFAR10, LGL achieves better accuracy than SML. This is possibly due to the

lack of very similar classes as in MNIST-type data. This observation demonstrates LGL’s

potential as a competitive alternative to SML in some classification tasks.
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Loss Model

MobilenetV2 Resnet18

LGL 92.40 91.55
SML 91.11 91.32
LGL-INR 93.34 93.68

Table 21: Predictive top-1 accuracy rate (%) on the standard testing data of CIFAR10 using
different models.

LGL SML LGL-INR

Figure 16: Confusion matrix on KMNIST testing data for LGL, SML and LGL-INR. Model:
CNN2C. See Table 20 for overall accuracy. Notably, LGL-INR outperforms LGL in all 10
classes and SML in 9 classes except Class 1 (LGL-INR 940 vs. SML 945), in terms of per-
class accuracy.

On the other hand, LGL-INR adaptively pays more attention on the hard classes while

keeps its separation from easy classes. This enables LGL-IRN to outperform LGL and SML

notably. Comparing LGL-IRN with LGL, we see that the multi-modality neglect problem

deteriorates LGL’s ability of learning discriminative features representation, which can be

relieved by the in-negative class reweighing mechanism; comparing LGL-IRN with SML,

focusing on learning hard classes (not restricted to classes similar to the target class) is

beneficial. Also, the adaptive weight assignment in the training process doesn’t require

extra effort on the weight selection, making our method widely applicable.
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FMNIST

KMNIST

Figure 17: Testing top-1 accuracy on FMNIST and MNIST.

5.5.3 Further Analysis

We check the predictive behavior of LGL-INR in detail by looking at the confusion

matrix on testing data. Here, we use CNN2C and KMNIST dataset as an example. Fig

16 show the results. We observe that for LGL, Class 1 and 2 have the lowest accuracy

among 10 classes. By shifting LGL’s learning focus on hard classes, LGL-INR significantly

improves model performance on class 1 and 2. This is within our expectation backed by

the theoretical depiction of LGL’s learning behavior. SML does not have the multi-modality

neglect problem as each class is treated equally in the learning process, yet it also does

not pay more attention to the hard classes. This makes LGL-INR advantageous: LGL-INR

outperforms SML on 9 classes out of 10. For example, class 0 have 18 samples misclassified

into class 4 whereas only 6 are misclassified in LGL-INR.
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β 1 2 4

Accuracy 96.43 96.29 96.43

Table 22: Accuracy of different β values on KMNIST. Model: CNN2C.

Figure 17 displays the training accuracy curve for LGL, SML and LGL-INR on FMNIST

and KMNIST. Under the same training protocol, LGL-INR achieves slightly faster conver-

gence rate than SML and LGL with comparative (FMNIST) or better (KMNIST) perfor-

mance, implying that focusing on learning hard classes may facilitate model training pro-

cess.

We also check the sensitivity of the temperature parameter β in LGL-INR weighting

mechanism. Mathematically, a large or small value for β is not desirable as the LGL-INR

is reduced to an approximate one-vs.-one or a class-balanced learning objective. We test

β = 1, 2, 4 on KMNIST. As shown in Table 22 and Fig. 17, model performance is not

sensitive to β in this range, making LGL-INR a competitive alternative to LGL or SML

without introducing much hyper-parameter tuning.

5.6 Conclusion

In this chapter, motivated to explain the class-wise reweighting mechanism in LGL and

SML, we theoretically deprived a system of probability equations that depicts the learning

behavior of LGL and SML, as well as explains the roles of those class-wise weights in the

loss function. By examining the difference in the effects of the weight mechanism on LGL

and SML, we identify the multi-modality neglect problem is the major obstacle that can

negatively affect LGL’s performance in multi-class classification. We remedy this shortcom-

ing of LGL with a in-negative-class reweighting mechanism. The proposed method shows

its effectiveness on several benchmark image datasets. For future works, we plan to incor-
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porate the estimation of data distribution in the model training process to further improve

the efficacy of the reweighting mechanism.
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CHAPTER 6 LEARNING COMPACT FEATURES VIA IN-TRAINING REPRESENTATION
ALIGNMENT

6.1 Introduction

Recently, deep neural networks (DNNs) have achieved remarkable performance im-

provements in a wide range of challenging tasks in computer vision [68, 47, 55, 75],

natural language processing [140, 16] and healthcare informatics [99, 84, 74, 82]. For

supervised learning, DNNs can be viewed as a feature extractor followed by a linear classi-

fier on the latent feature space, which are jointly trained using stochastic gradient descent

(SGD). Specifically, in each iteration of SGD, a mini-batch of m samples {(xi, yi)}mi=1 is sam-

pled from the training data {(xi, yi)}ni=1(n > m). The gradient of loss function L(x, θ) is

calculated on the mini-batch, and network parameter θ is updated via one step of gradient

descent (learning rate α):

1

n

n∑
i=1

∇θL(xi, θ) ≈
1

m

m∑
i=1

∇θL(xi, θ),

θ ← θ − α · 1

m

m∑
i=1

∇θL(xi, θ).

(6.1)

This update in Eq.(6.1) can be interpreted from two perspectives. (1) From the conven-

tional approximation perspective, the true gradient of the loss function (i.e., gradient on

the entire training data) is approximated by the mini-batch gradient. As each mini-batch

contains useful information for the learning tasks and its gradient computation is in ex-

pensive, large DNNs can be efficiently and effectively trained with modern computing

infrastructures. (2) Eq. (6.1) can also be interpreted as an exact gradient descent

update on the mini-batch. In other words, SGD updates network parameters θ to achieve
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Figure 18: A comparison of ITRA and vanilla SGD training on the CIFAR10 testing data.
Left: normalized distance between samples of the same class from different mini-batches
used in training; middle: testing accuracy; right: testing cross-entropy loss. The model is
Resnet18.

maximum improvement in fitting the mini-batch. As each mini-batch is usually uniformly

sampled from training data, such exact update inevitably introduces the undesirable mini-

batch-dependent noise and bias in the backpropagation, resulting in the over-adaption of

model parameters to that mini-batch.

A natural question then to ask is, “can we reduce the over-adaption to mini-batches?", to

reduce the mini-batch dependence on SGD update in Eq. (6.1). In this chapter, we propose

In-Training Representation Alignment (ITRA) that aims at reducing the mini-batch over-

adaption by aligning feature representation of different mini-batches that is learned by the

feature extractor in SGD. Our motivation for feature alignment is: if the SGD update using

one mini-batch A is helpful for DNNs learning good feature representations with respect to the

entire data, then for another mini-batch B, their feature representation should align well with

each other. In this way, we can reduce mini-batch over-adaption by forcing accommodation

of SGD update to B and reducing dependence of the parameter update on A. Ideally, if the

distribution P (h) of latent feature h is known as a prior, we could explicitly match the mini-

batch feature hmb with P (h) via maximum likelihood. However, in practice, P (h) is not
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known or does not even have an analytic form. To achieve this, we utilize the maximum

mean discrepancy (MMD) [41] from statistical hypothesis testing for the two-sample prob-

lem. MMD is differentiable that can be trained via back propagation. Moreover, we show

in an analysis that the gradient of MMD enjoys several good theoretical merits. Based on

the theoretical analysis, ITRA reduces SGD update adaption to mini-batches by implicitly

strengthening the supervision signal of high-density samples via an adaptively weighting

mechanism (details are provided in later sections), where high-density samples are closely

clustered to form modalities for each class.

To check effect of gradient update on feature representation learning, an illustrative

example on CIFAR10 dataset is presented in Figure 18. The model is Resnet18 with BN

layers trained with cross-entropy (CE) loss. We calculate the distance between a pair of

same-class samples from two mini-batches respectively and plot the normalized distance

(due to different magnitude of latent features trained with different methods) in the left

panel of Figure 18, after model training is stabilized and achieves relatively good perfor-

mance. We see that when model is trained only with CE loss in vanilla SGD, the distance

stabilizes while the training makes progresses. This is due to that as long as the model

captures the classification pattern for each class, vanilla SGD adapts to mini-batch samples

to achieve gain for the loss function yet does not further encourage feature alignment to

learn compact feature representations. From optimization perspective, we can also under-

stand this with the gradient of CE loss: when a training sample is well learned by SGD

with confident prediction, its contribution in the gradient vanishes, implying that SGD

updates mostly focus on those samples with less confidence (i.e., smaller predicted proba-

bility). Hence, vanilla SGD has little effect on the compactness of feature representations.
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However, in ITRA, the distance between a pair of samples keeps decreasing. This implies

ITRA can help DNN learn more compact feature representations by aligning different mini-

batches. DNNs can benefit from such compactness and hence achieve higher accuracy and

lower loss (Fig. 18 middle and right panels).

We summarize our contributions as follows. (1) We propose a novel and general train-

ing strategy ITRA for training DNNs. ITRA augments conventional SGD with regularization

by forcing feature alignment of different mini-batches to reduce mini-batch over-adaption.

ITRA can be combined with existing regularization approaches and applied on a broad

range of network architectures and loss functions. (2) We provide a theoretical analysis

on the desirable effects of ITRA and explains why ITRA help reduce the over-adaption

of vanilla SGD to mini-batches. With MMD, ITRA has an adaptively weighting mecha-

nism that can help neural networks learn more discriminative feature representations and

avoid the assumption of uni-modality on data distribution. Results on benchmark datasets

demonstrate that training with ITRA can significantly improve DNN performances, com-

pared with other state-of-the-art methods.

6.2 Related Work

Modern architectures of DNNs usually have an extremely large number of model pa-

rameters, which often outnumbers the available training data. To reduce overfitting in

training DNNs, regularizations are needed. Those regularization methods include classic

ones such as L1/L2-norm penalties and early stopping [44, 37]. For deep learning, many

new approaches are proposed motivated by the SGD training dynamics. For example,

dropout [131] and its variants [33, 36] achieve regularization by reducing the co-adaption

of hidden neurons of DNNs. In the training process, dropout randomly sets some hidden
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neurons’ activation to zero, resulting in an averaging effect of a number of sub-networks.

[58] proposes batch normalization (BN) to reduce the internal covariate shift caused by

SGD. By maintaining the mean and variance of mini-batches, BN regularizes DNNs by dis-

couraging the adaption to the mini-batches. For image classification, data-augmentation

types of regularization are developed [23, 34]. Different from those approaches, our pro-

posed ITRA is motivated by the perspective of exact gradient update for each mini-batch

in SDG training. ITRA achieves regularization by encouraging the alignment of feature

representations of different mini-batches. Those methods are compatible with ITRA for

training DNNs and hence can be applied in conjunction with ITRA.

Another line of regularization are loss function-based that the supervision loss is aug-

mented with other loss functions under different considerations. For example, label smooth-

ing [142] corrupts the true label with a uniformly-distributed noise to discourage DNNs’

over-confident predictions for training data. [149, 153] propose a strategy that assumes

the latent feature representation to follow a known parametric distribution. With explicitly

assuming the uni-modality of data distributions for each class, the supervision loss (i.e.,

cross-entropy) and maximum likelihood are simultaneously optimized. However, this as-

sumption may be too strict as the true data distribution is generally unknown. ITRA avoids

the distribution assumption and applies non-parametric MMD for feature alignment.

Recently, regularization methods based on knowledge distillation (KD) [51, 39] have

attracted much attention. The idea behind this approach is that the distribution of model

predicted probabilities for each class, rather than the probability for sample’s true class,

contains richer information about the data manifold. For example, [64] proposes the net-

work as regularization approach that jointly trains a target and auxiliary network where
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the target network is boosted with the knowledge distilled from the auxiliary network.

[32] develops born-again neural networks (BAN). In BAN, multiple DNNs of the same

architecture are sequentially trained using soft labels generated from its previous gen-

eration. [162] trains two DNNs with mutual knowledge distillation by optimizing the

KL-divergence of model predicted probabilities. Though KD-based approaches are effec-

tive, multiple DNNs are trained which is computationally inefficient, whereas our ITRA is

trained only in one network.

To match the distribution of different mini-batches, ITRA uses MMD as its learning ob-

jective. MMD [40, 41] is a probability metric for testing whether two finite sets of samples

are generated from the same distribution. Using a universal kernel (i.e., Gaussian kernel),

minimizing MMD encourages to match all moments of the empirical data distribution.

MMD has been widely applied in many machine learning tasks. For example, [85] and [71]

use MMD to train unsupervised generative models by matching the generated distribution

with the data distribution. Another application of MMD is for the domain adaption. To

learn domain-invariant feature representations, [91] uses MMD to explicitly match feature

representations from different domains. There are also other probability-based distance

metrics applied in domain adaption such as A-divergence [4] and Wasserstein distance

[127]. However, these metrics are non-differentiable while the differentiability of MMD

enables the adaptive weighting mechanism in ITRA. Moreover, our goal is different from

those applications. In ITRA, we do not seek exact distribution matching. Instead, we use

MMD as a regularization to improve SGD training.
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6.3 Preliminary: Maximum Mean Discrepancy

Given two finite sets of samples S1 = {xi}ni=1 and S2 = {yi}mi=1, MMD [40, 41] is

constructed to test whether S1 and S2 are generated from the same distribution. MMD

compares the sample statistics between S1 and S2, and if the discrepancy is small, S1 and

S2 are then likely to follow the same distribution.

Using the kernel trick, the empirical estimate of MMD [40] w.r.t. S1 and S2 can be

rewritten as:

MMD(S1, S2) =
[ 1

n2

n∑
i,j=1

K(xi, xj) +
1

m2

m∑
i,j=1

K(yi, yj)

− 2

mn

n∑
i=1

m∑
j=1

K(xi, yj)
]1/2

,

where K(·, ·) is a kernel function. [40] shows that if K is a characteristic kernel, then

asymptotically MMD = 0 if and only S1 and S2 are generated from the same distribu-

tion. A typical choice of K is the Gaussian kernel with bandwidth parameter σ: K(x, y) =

exp(− ||x−y||
2

σ
). With Gaussian kernel, minimizing MMD is equivalent to matching all orders

of moments of the two datasets [85].

6.4 In-Training Representation Alignment

The Proposed ITRA The idea of ITRA is to reduce the DNN over-adaption to a mini-

batch if we view the SGD iteration as an exact update for that mini-batch. In terms of

feature learning, we attempt to train the feature extractor to encode less mini-batch de-

pendence into the feature representation. For this purpose, we could ideally enforce the

feature representation of the used mini-batch to align with the true data distribution. How-

ever, as the true distribution is unknown, we sample a different mini-batch as an approxi-
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mation to the true distribution in each iteration of SGD.

More formally, let fθ(x) be a convolutional neural network model for classification

that is parameterized by θ. It consists of a feature extractor h = Eθe(x) and a linear

classifier Cθc(h) parameterized by θe and θc respectively. Namely, fθ(x) = Cθc(Eθe(x)) and

θ = {θe, θc}. Without ambiguity, we drop θ in f, E and C for notational simplicity.

In each iteration of SGD, let S(1) = {(x(1)
i , y

(1)
i )}m1

i=1 be the mini-batch of m1 samples.

Then the loss function using cross-entropy (CE) on S(1) can be written as

Lmb(θ) = − 1

m1

m1∑
i=1

log f
y
(1)
i

(x
(1)
i ), (6.2)

where f
y
(1)
i

(x
(1)
i ) is the predicted probability for x(1)

i ’s true label y(1)
i . SGD performs one

gradient descent step on Lmb w.r.t. θ using Eq. (6.1). To reduce θ’s dependence on S1 in

this exact gradient descent update, we sample from the training data another mini-batch

S(2) = {(x(2)
i , y

(2)
i )}m2

i=1 to match the latent feature distribution between S(1) and S(2) using

MMD:

H(1) = {h(1)
i = E(x

(1)
i ) : i = 1, · · · ,m1},

H(2) = {h(2)
i = E(x

(2)
i ) : i = 1, · · · ,m2},

Match(θe;H(1), H(2)) = MMD(H(1), H(2)).

(6.3)

Our proposed ITRA modifies the conventional gradient descent step in SGD by aug-

menting the cross-entropy loss (Eq. (6.2)) with the matching loss, which justifies the

name of ITRA:

θ ← θ − α∇θ

[
Lmb(θ) + λMatch(θe;H(1), H(2))

]
, (6.4)
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Table 23: Classification accuracy (in %) and CE loss trained with and without ITRA, on
the testing data of QMNIST, KMNIST and FMNIST.

QMNIST KMNIST FMNIST

Acc w/ ITRA 98.94 94.42 90.79
w/o ITRA 98.86 94.19 90.52

CE w/ ITRA 0.037 0.196 0.257
w/o ITRA 0.037 0.227 0.269

where λ is the tuning parameter controlling the contribution of the matching loss. Note

that mini-batch S(2) is not used in the calculation of cross-entropy loss Lmb(θ).

Initial results using ITRA To test the effectiveness of ITRA, we performed initial experi-

ments using three MNIST-type datasets: QMNIST [159], KMNIST [17] and FMNIST [158].

We trained a simple CNN of two convolutional layers with and without ITRA under the ex-

actly same setting. Experiment details are provided in the supplemental material. Table 23

shows the classification accuracy and CE loss (i.e., negative log-likelihood) on the standard

testing data. From Table 23, we see that ITRA has overall better accuracies and smaller

testing losses than the vanilla SGD training for three datasets, which implies a regulariza-

tion effect of ITRA that can improve model performance.

Class-conditional ITRA For classification tasks, we could utilize the label information and

further refine the match loss as a sum of class-conditional matching loss, termed as ITRA-c

(k = 1, · · · , K):

Hk
(1) = {h(1)

i = E(x
(1)
i ) : yi = k, i = 1, · · · ,m1}

Hk
(2) = {h(2)

i = E(x
(2)
i ) : yi = k, i = 1, · · · ,m2}

Matchc(θe;H(1), H(2)) =
1

K

K∑
k=1

MMD(Hk
(1), H

k
(2)),

(6.5)
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where K is the total number of classes and yi = k the true label of sample xi. The ITRA-c

update is

θ ← θ − α∇θ

[
Lmb(θ) + λMatchc(θe;H(1), H(2))

]
. (6.6)

6.4.1 Analysis on ITRA

On learning compact feature representations To further gain insight on the desirable

effects of ITRA on the SGD training procedure, we analyze the matching loss at the sample

level. With the same notation in Eq. (6.5), the matching loss for class k is

M := Matchk = MMD(Hk
(1), H

k
(2)).

Since MMD is symmetric with respect to Hk
(1) and Hk

(2), without loss of generality, we

consider sample x(1)
i with its feature representation h

(1)
i = E(x

(1)
i ) from Hk

(1) (but the CE

loss is not symmetric and only calculated on the first mini-batch H(1)). Then the gradient

of matching loss with respect to h
(1)
i is (we drop the superscript (1) in x

(1)
i and h

(1)
i for

simplicity)

∇hiM =
1√
M
∇hi

[ 1

m2
1

m1∑
j=1

K(hi, h
(1)
j )

− 2

m1m2

m2∑
j=1

K(hi, h
(2)
j )
]
.

For Gaussian kernelK(x, y), its gradient with respect to x is∇xK(x, y) = −2 exp(− ||x−y||
2

σ
)x−y

σ
.

Note that σ is data-dependent and treated as hyperparameter. Hence, it is not back propa-

gated in the training process and in practice set as the median of sample pairwise distances
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[41, 91, 85]. By the linearity of gradient operator, we have

∇hiM =− 2√
M

[ 1

m2
1

m1∑
j=1

exp(−
||hi − h(1)

j ||2

σ
)
hi − h(1)

j

σ

− 2

m1m2

m2∑
j=1

exp(−
||hi − h(2)

j ||2

σ
)
hi − h(2)

j

σ

]
.

(6.7)

We notice that for function ga(x) = exp(−x2/a)x/a (a is some constant), ga(x) → 0

exponentially as x→∞. Hence, for fixed σ, using the triangle inequality of L2 norm,

||∇hiM || ≤
2√
M

[ 1

m2
1

m1∑
j=1

gσ(||hi − h(1)
j ||)

+
2

m1m2

m2∑
j=1

gσ(||hi − h(2)
j ||)

]
.

(6.8)

Within the mini-batch,
√
M remain as constant for all samples. From Eq. (6.8), we

observe that when xi deviates significantly away from the majority of samples of the same

class, i.e., noisy samples or outliers, ||hi−h(1)
j || and ||hi−h(2)

j || are large, the magnitude of

its gradient in matching loss diminishes. In other words, xi will only provide signal from

the supervision loss (e.g., CE loss) and its impact on matching loss is negligible. On the

other hand, training ITRA with matching loss promotes the alignment of feature represen-

tations of samples that stay close in the latent feature space. From the data distribution

perspective, samples deviating from the majority are likely of low-density or even outliers.

Then such behavior of ITRA implies that it can help DNNs to better capture information

from high density areas and reduce the distraction of “low density" samples in learning

feature representations on the data manifold.

On reducing over-adaption to mini-batches The analysis above shows that low-density



113

samples only provide supervision signal in ITRA, we now analyze how ITRA reduces the

over-adaption to mini-batches. It turns out that this effect is achieved by an adaptively

weighted feature alignment mechanism, which implicitly boosts the supervision signal

from high-density samples and resultantly downweights relatively the contribution of low-

density samples.

To understand this, we examine the full gradient of supervision loss L and matching

loss MMD. Note that in ITRA, the gradient of supervision loss is only calculated on one

mini-batch. Without loss of generality, we consider sample xi from the first mini-batch.

The full gradient of L(xi) and M=MMD(xi, H
k
(2)) with respect to hi is (using the same

notation as above)

∇hi(M + L) =
4√
Mm2

m2∑
j=1

exp(−
||hi − h(2)

j ||2

σ
)
hi − h(2)

j

σ

+∇oiL ·
∂oi
∂hi

,

where oi is the output for xi. Let A =
∑m2

j=1 exp(−||hi − h(2)
j ||2/σ) and wj = exp(−||hi −

h
(2)
j ||2/σ)/A (

∑m2

j=1 wj = 1), then equivalently:

∇hi(M + L) =
4A√
Mm2σ

(hi −
m2∑
j=1

wjh
(2)
j ) +∇oiL ·

∂oi
∂hi

. (6.9)

When ITRA converges and DNNs is well trained with good performance, ||∇hi(M+L)|| ≈ 0

and ||∇oiL·∂oi/∂hi|| is close to zero, we have ||hi−
∑m2

j=1 wjh
(2)
j || < ε (ε is a small scalar). In

other words, ITRA promotes the feature representation hi of xi to align with the weighted

average
∑m2

j=1wjh
(2)
j (
∑m2

j=1wj = 1), where each wj is adaptively adjusted in the training
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process based on similarity between hi and h
(2)
j in the latent feature space. As mini-batch

samples are uniformly sampled from the training data, it is expected that on average, the

majority of {h(2)
j }

m2
j=1 are from high-density area of the data distribution. For DNNs with

good generalizability, DNNs must perform well for samples from those areas (as testing

samples are more likely to be generated from high-density areas in the data manifold).

Hence, provided that sample xi is of high-density that already provides useful supervision

signal, ITRA further boosts its contribution by aligning hi with
∑m2

j=1wjh
(2)
j of other high-

density samples in the 2nd mini-batch. The adaptive weight wj is critical: if sample h(2)
j

is of low-density and deviates far from xi, its weight wj is automatically adjusted small,

having vanishing contribution in the gradient. This in turn downweights relatively the

contribution of low-density samples in SGD, resulting in the reduction of over-adaption to

mini-batches.

Accommodating multi-modalities The adaptively weighting mechanism brings another

benefit: if the data distribution (for each class) is of multi-modality in the latent feature

space, ITRA automatically aligns xi with its corresponding modality. Specifically, without

loss of generality, assume there are two modalities md1 and md2, {h(2)
j } consists of samples

from md1 and md2 and xi is generated from md1. We can rewrite hi −
∑m2

j=1wjh
(2)
j =

hi − (
∑

j∈md1 wjh
(2)
j +

∑
j∈md2 wjh

(2)
j ). As xi is generated from md1 and deviates from md2,

implying that xi is closer to samples from the same modality than those from the other

modality. Hence, with the adaptively weighting mechanism in Eq. (6.9), wj ≈ 0 (j ∈ md2)

and hi −
∑m2

j=1 wjh
(2)
j ≈ hi −

∑
j∈md1 wjh

(2)
j . That is, align xi only with samples from the

same modality. Therefore, ITRA avoids the uni-modality assumption on data distribution

as in [153, 149] and justifies the advantage of nonparametric MMD for feature alignment.
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6.5 Experiments

In this section, we evaluate the ITRA strategy on benchmark datasets of image classifi-

cation. In our experiments, ITRA-c is tested as it provides implicit label information with

better supervision in the training process. We implement our codes in Pytorch [109] and

utilize Nivdia RTX 2080TI GPU for computation acceleration.

Datasets We test ITRA on five benchmark datasets Kuzushiji-MNIST (KMNIST) [17], Fashion-

MNIST (FMNIST) [158], CIFAR10, CIFAR100 [67] and STL10 [18]. KMNIST and FMNIST

are two gray-scale image datasets that are intended as alternatives to MNIST. Both datasets

consist of 70,000 (28 × 28) images from 10 different classes of Japanese character and

clothing respectively, among which 60,000 are used for training data and the remaining

10,000 for testing data. CIFAR10 and CIFAR100 ar colored image datasets of 32 × 32 res-

olution. It consists of 50,000 training and 10,000 testing images from 10 and 100 classes

respectively. STL10 is another colored image dataset where each image is of size 96 ×

96. Original STL10 has 100,000 unlabeled images, 5,000 labeled for training and 8,000

labeled for testing. In our experiment, we only use the labeled subset for evaluation.

Comparison In the experiments, in addition to the vanilla SGD training as the baseline

(i.e., w/o ITRA), we also compare ITRA with other loss-function based regularization

methods. All DNNs in our experiments include BN layers as part of the model architec-

tures. Label smoothing [142] (LSR) is a target-based regularization that the Dirac distri-

bution for ground truth label is replaced with a mixture of Dirac distribution and uniform

distribution; center loss [153] (Center) encourages interclass compactness of feature rep-

resentations which augments the cross-entropy loss with the maximum likelihood [149]
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assuming that each class follows Gaussian distribution in latent feature space.

Implementation Details6 Through all experiments, the optimization algorithm is the stan-

dard stochastic gradient descent with momentum and the loss function is cross-entropy

(CE) loss. In ITRA-c, CE loss is further combined with the matching loss Eq. (6.6) in each

iteration.

For the initial experiments on QMNIST, KMNIST and FMNIST, the CNN architecture of

2 convolutional layers is Conv(C20K5S1)-MP(K2S2)-Conv(C50K5S1)-MP(K2S2)-100-10,

where CxKySz for a convolutional layer means x convolutional kernels with kernel size y,

stride z; MP represents max-pooling. To train the network, we use the SGD algorithm with

a momentum of 0.5. The number of epochs is 50. Learning rate is 0.01 and multiplied by

0.2 every 20 epochs. Batch size is set to 150. We don’t use L2 regularization. In ITRA, the

tuning parameter λ is set to 1.

For KMNIST and FMNIST in “Experiments" section, we build a 5-layer convolutional

neural network (CNN) with batch normalization applied. The CNN architecture is Conv(C32K3S1)

- BN - Conv(C64K3S1) - BN - Conv(C128K3S1) - MP(K2S2) - Conv(C256K3S1) - BN -

Conv(C512K3S1) - MP(K8S1) - 512 - 10, where BN represents batch-normalization. Mo-

mentum is set to 0.5, batch size 150, number of epochs 50, initial learning rate 0.01 and

multiplied by 0.2 at 20th and 40th epoch. No data augmentation is applied. For CIFAR10

and STL10, we use publicly available implementation of VGG13 [130], Resnet18 [47] and

MobilenetV2 [53]. All models are trained with 150 epochs, SGD momentum is set to 0.5,

initial learning rate is 0.5 and multiplied by 0.1 every 50 epochs, batch size 150. We resize

STL10 to 32 × 32. For colored image datasets, we use random crop and horizontal flip for

6Code is provided at https://github.com/Dichoto/ITRA
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Table 24: Accuracy (in %, larger is better) and CE (smaller is better) on KMNIST and
FMNIST testing data.

KMNIST FMNIST

λ Acc CE λ Acc CE

Baseline - 95.57 0.183 - 92.43 0.294
LSR 0.1 95.60 0.181 0.1 92.47 0.292

Center 0.1 94.90 0.214 0.1 92.10 0.263
ITRA 0.8 95.79 0.170 0.6 92.57 0.224

data augmentation. For CIFAR100 with more classes, we use weight decay of 5× 10−4 and

a mini-batch size of 300.

In all experiments, networks are trained with each method under the same setting

(learning rate, batch size et al.). For the bandwidth parameter in Gaussian kernels, we

follow the practice in [40, 41, 91] that takes the heuristic of setting σ as the median

squared distance σMed between two samples and use a mixture of Guassian kernels with

bandwidth set as a multiple of σMed. In our experiments, we use 5 kernels kmix(x, y) =

1
5

∑5
i=1 kσi(x, y) with {σi = 2iσMed : i = 0, · · · , 4}. To select the tuning parameter λ in each

method, we split out 5,000 images from the training data as validation dataset. For λ in

ITRA, we test {0.2, 0.4, 0.6, 0.8, 1} for checking ITRA’s sensitivity to it. Note that when

λ = 0, ITRA is equivalent to vanilla SGD training. In LSR, we select the tuning parameter

from {0.2, 0.15, 0.1, 0.05}; for center loss, {0.2, 0.15, 0.10, 0.05} are tested. We utilize the

standard train/test split given in the benchmark datasets and train all models once on the

training data and performances are evaluated on the testing data.

6.5.1 Results

For evaluation, we report the Top-1 accuracy and CE loss values for all methods. The

optimal hyperparameter λ for each method is also shown and results on other tunning
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Figure 19: Testing loss w.r.t. different λ values on KMNIST and FMNIST

Table 25: Accuracy (in %, larger is better) and CE loss (smaller is better) of Resnet18,
VGG13 and MobilenetV2 on CIFAR10, STL10 and CIFAR100.

CIFAR10 STL10 CIFAR100

λ Acc CE λ Acc CE λ Acc CE

Resnet18

Baseline - 92.99 0.40 - 70.88 1.63 - 74.19 1.05
LSR 0.1 92.73 0.42 0.1 71.08 1.55 0.1 74.21 1.04

Center 0.1 92.30 0.35 0.1 70.97 1.10 0.05 73.98 0.98
ITRA 0.8 93.70 0.27 0.6 72.78 1.05 0.6 74.88 0.97

VGG13

Baseline - 92.49 0.47 - 74.40 1.55 - 71.72 1.46
LSR 0.1 92.53 0.46 0.1 74.50 1.51 0.1 71.75 1.43

Center 0.05 92.11 0.38 0.05 74.04 1.16 0.05 71.65 1.31
ITRA 0.8 92.72 0.33 0.8 75.80 0.93 0.6 72.55 1.22

MobilenetV2

Baseline - 88.55 0.62 - 59.09 2.14 - 66.42 1.57
LSR 0.1 88.77 0.61 0.1 59.01 2.12 0.1 66.60 1.55

Center 0.1 88.81 0.53 0.1 58.24 1.46 0.05 66.39 1.51
ITRA 1.0 89.37 0.43 0.6 62.02 1.60 0.6 67.23 1.49

parameter values are shown in supplemental material. .

KMNIST Table 24-KMNIST shows the predictive performance for KMNIST. From the Ta-

ble, we see that training with ITRA achieves better results in terms of accuracy and CE. In

terms of the testing loss, ITRA always has a smaller loss value compared with other meth-

ods. The testing loss with respect to different λ values are shown in Figure 19 (a) of the

supplemental materials. As CE is equivalent to negative log-likelihood, smaller CE value

implies the network makes predictions on testing data with higher confidence on average.
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Figure 20: Testing loss w.r.t. different λ values on CIFAR10, STL10 and CIFAR100. CNN
Model is Resnet18.

In each iteration of ITRA, there is a tradeoff between the CE and matching loss. This leads

to that ITRA has a regularization effect by alleviating the over-confident predictions on

training data. As a result, the smaller gap between training and testing loss implies ITRA

has better generalization performance.

FMNIST Table 24-FMNIST shows the predictive performance for FMNIST testing data. As

can be seen from the Table, ITRA has better predictive accuracy than other methods and

smaller testing loss (the testing loss for different λs are shown in Figure 19 (b) in the

supplemental materials). When trained with vanilla SGD, we observe that the increasing

testing loss exhibits a trend of overfitting, which is due to that FMNIST has a significant

number of hard samples (e.g., those from pullover, coat and shirt classes). However, ITRA

is capable of regularizing the training process hence prevents overfitting and stabilizes the

testing loss as shown in the figure.

CIFAR10 In Table 25-CIFAR10, we present the performance of Resnet18, VGG13 and Mo-

bilenetV2 on CIFAR10. From Table, we see that ITRA achieves the best performance com-

pared among all four methods. When λ is set with a relatively large value of 0.8 or 1, ITRA

can improve the accuracy by a margin 0.71% for Resnet, 0.23% for VGG13 and 0.82%
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w/o ITRA

w/ ITRA

(a)Resnet18 (b)VGG13 (c)MobilenetV2

w/ ITRA w/ ITRA

w/o ITRA w/o ITRA

Figure 21: T-SNE plot for CIFAR10 testing data. Networks are trained with λ that achieves
best accuracy in Table 25.

for MobilenetV2. This is due to that larger λs incorporate stronger implicit supervision

information as mini-batches from the same class are matched. We also plot the CE loss

for different λs in Figure 20 (a) w.r.t. Resnet (for illustration purpose). Comparing with

baseline, we see that training with ITRA results in significant gain in CE, regardless of net-

work architecture: Resent 32.6%((0.40 − 0.27)/0.40), VGG 29.4% and MobilenetV2 30.6%.

This pattern also holds for other λ values. A closer gap between training and testing losses

usually implies better generalization as it means a closer distribution match between train

and testing data. From this perspective, ITRA can regularize DNNs to learn feature repre-

sentations with better generalizability.

STL10 The results on STL10 is shown in Table 25-STL10. Similar to CIFAR10, a larger

value of λ results in higher accuracy with significant margin for ITRA, i.e., Resnet 1.9%,

VGG13 1.4% and MobilenetV2 2.93%. In terms of CE loss, all methods have similar training
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losses that are close to zero. However, ITRA and Center have significant better testing

loss than other the baseline and LSR. From the Table, Resnet can improve testing loss

35.6%(0.581/1.630), VGG 39.5% and MobilenetV2 20.6%. As shown in Figure 20 (b), when

trained with the baseline, the testing loss shows an increasing trend as a sign of overfitting

while ITRA can alleviate this trend as λ increases.

CIFAR100 Table 25-CIFAR100 shows the results for CIFAR100. Compared with other

methods, ITRA achieves the best accuracy on the CIFAR100 testing data. In terms of

CE loss, ITRA also results in the smallest loss values. As shown in Figure 20 (c), for other

λ values, ITRA always improves CE over vanilla SGD. However, the improvements in CE

loss is not as significant as other datasets like CIFAR10 and STL10, 7.6% for Resnet18,

15.6% VGG13 and 6.5% MobilenetV2. Since CIFAR100 has 100 classes with 500 training

samples for each class, among which some classes are mutually similar, for example, otter

v.s. beaver, this implies that samples from those classes may stay close in the feature space.

Resultantly classifiers make less confident predictions for those samples and hence leads

to larger CE values, which holds true for all methods. However, DNNs can still benefit

from ITRA as ITRA can explicitly learn more compact feature representations, resulting in

marked accuracy improvement on the testing data.

6.5.2 Learning Properties of ITRA

Implicit supervision We observe that ITRA with a relatively larger λs tends to have

better performances when compared with smaller λs. and outperforms the vanilla SGD

training (Smaller λs achieves at least comparable performances with vanilla SGD). A plau-

sible reason for this phenomenon is that ITRA-c provides implicit supervision in the learn-

ing process by matching two random mini-batches from the same class. This leads to that
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ITRA can reduce the testing CE loss significantly, in particular for CIFAR10 and STL10

datasets. Given a sample (x, y = k), its CE loss is calculated as − log fk(x), where fk is the

predicted probability for x’s true class label k. A smaller testing CE loss implies a larger

probability fk. With larger λs, ITRA can benefit from the stronger implicit supervision and

hence improve network performance.

Learning compact feature representations From the geometric perspective, samples

from the same class should stay close (i.e., intra-class compactness) and those from differ-

ent classes are expected to stay far apart (i.e., inter-class separability) in the feature space

(so that fk output by softmax is large). We visualize the distribution of CIFAR10 testing

samples with T-SNE [93] in Figure 21. From the figure, we have the following observa-

tions: (1) ITRA learns feature representation that is much tighter with clearer inter-class

margin than that learned by vanilla SGD training. (2) The data distribution in the latent

space learned by ITRA exhibits a consistent pattern that for each class, the majority of test-

ing samples are closely clustered to form a data manifold, while a small subset of samples

deviate from the majority. This phenomenon concurs with our analysis that the matching

loss provides diminishing gradient signals for “low-density" samples while encourages the

closeness of “high-density" samples. Hence, ITRA can effectively capture the “typical pat-

tern" of each class but can miss some hard samples that overlap with other classes. This

explains why ITRA achieves impressive improvement in CE loss but not as much in accu-

racy. Overall, ITRA still outperforms vanilla SGD training and can be used as a promising

training prototype that enjoys theoretical merits as shown in the analysis for matching loss.
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6.6 Conclusion

In this chapter, we propose a new training strategy, ITRA, as a loss function based regu-

larization approach that can be embedded in the SGD training procedure. ITRA augments

vanilla SGD with a matching loss that uses MMD as the objective function. We show that

ITRA enjoys three theoretical merits that can help DNN learn compact feature represen-

tations without assuming uni-modality on the feature distribution. Experimental results

demonstrate its excellent performance on classification tasks, as well as its impressive fea-

ture learning capacity. There are two possible directions for our future studies. The first

one is to improve ITRA that can learn hard sample more effectively. The second one is the

ITRA application in learning from poisoned datasets as ITRA is able to capture the high

density areas (i.e., modalities) for each class where poisoned samples deviates far from

those areas (e.g., erroneously labeled samples from other classes).
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CHAPTER 7 CONCLUSION

In this dissertation, we present several methods for predictive modeling from differ-

ent perspectives. With specific considerations in dealing with different data forms, our

research works are of significant intellectual merits.

7.1 Summary of Contribution

In Chapter 2 and 3, based on the generalized linear models, we propose two novel reg-

ularization methods for multi-class classification and finite mixture of regression respec-

tively. Those models incorporate l1-, l2- and l2,1-norms in their formulation that are able

to select features and feature groups. For high-dimensional problems where the number

of features outnumbers that of training samples, their sparsity-inducing effect can achieve

excellent performances as well as significantly enhance model’s interpretability. In terms

of optimization, we develop efficient block coordinate descent algorithms to solve those

two models.

As healthcare informatics is an important application of predictive modeling, in Chap-

ter 4, we build two DNN models, ATAN and DMNN, for cardiovascular disease risk predic-

tion. The ATAN model uses multi-task learning as a regularization to tackle the small data

problem. DMNN builds a mixture of neural networks to enable the discoveries of patient

subgroup that maintains good predictive performance as well as subgroup-dependent risk

factor identification.

In Chapter 5 and 6, we develop two models that improve DNNs performance by learn-

ing better feature representations than the conventional SGD training using cross-entropy

loss. In Chapter 5, we systematically analyze the learning property of LGL and SML and

then propose the theoretically motivated new loss, LGL-INR, that achieves excellent results
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on benchmark datasets. In Chapter 6, we take a new perspective on the conventional SGD

training that inspires our ITRA using MMD. Through an in-depth analysis, we demonstrate

that our method enjoys three theoretical merits that improve DNNs performance as well

as help DNN learn compact feature representations.

7.2 Future Directions

The methods developed in this dissertation are demonstrated effective for predictive

modeling. There are still possibilities for further improvements in our future study. We

discuss the potential developments as follows.

In Chapter 2, we propose CCSOGL for multi-class classification that simultaneously

selects class-dependent features and feature groups. While this approach is effective, it

heavily relies on the availability of prior knowledge about the grouping information of

features. However, when the structure of feature groups is unknown, our method is not

applicable. To extend CCSOGL to those cases, a promising approach is to incorporate bi-

clustering [104] in CCSOGL that is capable of clustering features. Each cluster can be

viewed as a feature group and CCSOGL can utilize such information to achieve feature

selection at the group level.

In Chapter 3, based on l2,1-norm, a sparsity-inducing regularization method is devel-

oped for finite mixture of regression. For predictive modeling, regression and classification

are two major tasks. Hence, a direct development of our method is to extend it to the finite

mixture of classification where each component is modeled by logistic regression.

With the recent surge in the availability of electronic health records (EHR), learning

form EHR has attracted much attention in the machine learning community. In Chapter

4, we develop two DNN models for cardiovascular disease prediction. While our methods
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can achieve accurate predictive performance, it only utilizes a limited amount of patient

information (e.g., demographics and lab results) and does not fully utilize the rich infor-

mation in EHR data that consists of unlabeled data, medical images, clinical texts and time

series data. Hence, for future studies, we can exploit the recent advances in representation

learning using DNNs to learn effective patient representations from the multimodal EHR

data that can incorporated in predictive modeling.

The learning property derived of LGL and SML in Chapter 5 reveals that the distribution

of latent features plays an important role for the classification performance. If data exhibits

multi-modality for each class, then the inference of feature distribution can enable us to

design new algorithm to focus on classification of modalities that are close in the latent

feature space. We expect that predictive modeling can benefit from such refinement with

“locality" awareness. Hence, the incorporation of distribution inference into the model

learning process is a promising research direction.

By viewing the SGD update as an exact update on the mini-batch, in Chapter 6, we pro-

pose ITRA that can regularize DNNs by forcing the alignment of feature representations of

two mini-batches. The theoretical analysis demonstrates that ITRA achieves three desirable

effects that can encourage DNNs to learn compact feature representations. In particular,

we shows that ITRA can implicitly boost the contribution of "high-density" samples and

relatively downweight that of "low-density" samples in the supervision loss to reduce the

over-adaption to mini-batches. Directly motivated by this property, a future direction of

our study is to learn from poisoned data based on ITRA. The idea is that when the input

features of a training sample (i.e., x) are corrupted or the sample is erroneously labeled

(i.e., y), we can view this (x, y) as a low-density sample, as it deviates from samples that
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have the same class label. Hence, downweighting such samples in ITRA can benefit model

training by reducing the distraction of poisoned samples.
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Predictive modeling (a.k.a. supervised learning) is a machine learning paradigm that

has enormous important applications for real-world problems. With the recent surge of

data in volume and complexity, effectively capturing the information in input features that

is relevant to targets is critical to the success of predictive modeling. Tackling this challenge

requires different techniques depending on the specific applications. In this dissertation,

we develop several methods to improve the performance of predictive models.

Specifically, in the case of small n, large p problem, we propose two sparsity-inducing

regularization methods for multi-class logistic regression and finite mixture of linear re-

gression, respectively. Those regularization can not only improve predictive performance,

but also greatly enhance model interpretability. As an important application of predictive

modeling, in healthcare informatics, we develop two DNN models for risk prediction. We

also study the learning property of logistic and softmax losses for deep neural networks;

we derive a system of equations that quantitatively depicts the property of the decision

boundary. Based on this property, an improved version of logistic loss is proposed. Finally,
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to improve the training of DNNs with stochastic gradient descent, we develop a regular-

ization method of feature alignment via maximum mean discrepancy.
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