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Abstract—Mobile artificial intelligence has recently gained
more attention due to the increasing computing power of mobile
devices and applications in computer vision, natural language
processing, and internet of things. Although large pre-trained
language models (e.g., BERT, GPT) have recently achieved the
state-of-the-art results on text classification tasks, they are not
well suited for latency critical applications on mobile devices.
Therefore, it is essential to design tiny models to reduce their
memory and computing requirements. Model compression has
shown promising results for this goal. However, some significant
challenges are yet to be addressed, such as information loss
and adversarial robustness. This paper attempts to tackle these
challenges through a new training scheme that minimizes the
information loss by maximizing the mutual information between
the feature representations learned from the large and tiny
models. In addition, we propose a certifiably robust defense
method named GradMASK that masks a certain proportion of
words in an input text. It can defend against both character-level
perturbations and word substitution-based attacks. We perform
extensive experiments demonstrating the effectiveness of our
approach by comparing our tiny RNN models with compact
RNNs (e.g., FastGRNN) and compressed RNNs (e.g., PRADO)
in clean and adversarial test settings.

I. INTRODUCTION

Mobile artificial intelligence (AI) has recently found ap-
plications in a wide range of domains, including image
classification, healthcare, recommender system, and sentiment
analysis [1], [2]. Even with the rapid improvements of mobile
hardware, the main obstacles in deploying deep neural net-
works (DNNs) on mobile devices are the high computational
and memory requirements during training and inference pro-
cesses. To alleviate this limitation, several model compression
techniques, e.g., quantization [3], weight pruning [4], and
knowledge distillation [5], have been applied to develop tiny
DNNs for mobile deployment in computer vision tasks. Some
tiny recurrent neural networks (RNNs) [6], [7] have also been
developed and applied in lightweight (IoT) applications [8].

However, deploying tiny models for natural language pro-
cessing (NLP) tasks is more challenging. NLP models include
an embedding layer that maps discrete words and phrases to
continuous vectors. The problem is that the embedding layer
usually takes more parameters than the remaining networks
due to the large vocabulary and high embedding dimension. In
practice, the word embedding parameters account for 80% of
the total parameters in a neural translation model of OpenNMT
[9]. Therefore, it is desired to reduce the parameters of the

embedding layer in tiny models. Many efforts have been
made to compress word embeddings, e.g., quantizing each
dimension of embeddings [10], filtering out uncommon words
in vocabulary [11], and applying code-books to represent the
original embeddings [12]. However, the existing works face
the information loss problem during compression or need
additional complex designs [13].

Unlike the above methods, we propose a simple but efficient
method to reduce the embedding layer’s parameters directly.
Instead of using a high embedding dimension, we employ a
much smaller one (i.e., decreasing from 200 to 5) for our
tiny model. However, Patel et al. [14] have demonstrated that
if the word embeddings do not get enough dimensions (a
lower bound), it will fail to uphold the equality constraints,
which ensures the correct embedding information. Therefore,
our smaller embedding dimension may cause poor embedding
performance and information loss. To mitigate these problems,
we apply a feature mapping technique, which distills features
from a large pre-trained model to a customized tiny model.
Specifically, we add a regularization term in our training
objective, which maximizes the mutual information between
the features learned from the large and tiny models during
the feature mapping. The mutual information is calculated by
the Kraskov–Stogbauer–Grassberger (KSG) estimator, which
has been demonstrated efficient to measure the similarity
between dense word embeddings [15]. Similarly, we establish
this design in the hidden state layer (e.g., LSTM) to further
reduce our tiny model’s parameters. As a result, our tiny model
contains much fewer parameters than the large model, i.e.,
decreasing from 2M to 100K.

As DNNs are increasingly deployed in safety- and security-
critical environments (e.g., healthcare and autonomous driv-
ing), a growing body of work is exploring the robustness prop-
erties of DNNs from the security perspective by proposing at-
tacks (methods for crafting adversarial examples) and defenses
(methods for making DNNs robust against such attacks). Thus,
it is also desired for our tiny RNN model to be robust against
adversarial attacks while employed on mobile devices. A few
certified defense methods have been developed to provably
guarantee the robustness of a text classifier against adversarial
attacks [16]. However, most existing methods assume that
the defenders are informed of how the attackers generate
adversarial examples, which is unrealistic. Additionally, to our



best knowledge, no method has been proposed specially to
improve the certified robustness of the tiny models for on-
device NLP applications.

More recently, Zeng et al. [17] propose a certifiably robust
defense method by randomly masking a certain proportion of
the words in an input text. The authors claim their method can
defend against word substitution based attacks and character-
level perturbations. However, the random mask approach does
not consider the efficiency and heavily relies on the total num-
ber of the masks. Differently, we design a novel certified de-
fense method named GradMASK, which intentionally masks
the most important words in the adversarial example instead
of randomly masking. The importance scores are achieved by
ranking the words’ gradient values. Our method guarantees
that the masked words make outstanding contributions to
the incorrect predictions. Then, we take the average logits
produced by the large model from the masked adversarial
examples for soft label knowledge distillation in our training
scheme. Thus, our tiny model gains certified robustness via
knowledge distillation and does not need additional adversarial
training to improve the robustness.

Specifically, our major contributions are summarized as: (1)
We design a tiny RNN model for on-device text classification
with a much fewer total number of parameters than the large
RNN model and other compact/compressed RNN models.
(2) We mitigate the information loss in model compression
by maximizing the layer-wise feature mutual information
and minimizing the soft label knowledge distillation loss
in our new training scheme. (3) A novel certifiably robust
defense method is employed to improve the robustness of tiny
models against different types of adversarial attacks covering
character-level and word-level perturbations. (4) The extensive
experiments demonstrate the effectiveness of our approach
by comparing our tiny models with baseline compact and
compressed RNN models in multiple text classification tasks.

II. RELATED WORK

A. Tiny RNN Models

RNN models have achieved significant success in learning
complex patterns for temporal/sequential data (e.g., sensor
signal, natural language). Beyond the classical LSTM and
GRU architectures, more sophisticated RNNs with skip con-
nections and residual blocks [18] and those combined with
CNNs have been developed to allow the RNNs to go ‘deeper’
and achieve better performance. However, despite the state-
of-the-art performance, these heavyweight RNN models are
resource-hungry and unsuitable for on-device deployment.

Recently, tiny RNN models with small parameter sizes (e.g.,
200K or less) have received increasing attention due to their
high application potential to on-device deployment, including
mobile and IoT environments. Ravi et al. [19] propose a
new architecture that jointly trains a large neural network
and a small projection network leveraging random projections
to transform inputs or intermediate feature representations
into bits. The projection network encodes lightweight and

efficient computing operations in bit space to reduce mem-
ory footprint. Since then, a few more advanced projection
networks have been proposed to achieve better performance
[20], [21]. Some tiny models have been designed with novel
compact RNN architectures [7]. Kusupat et al. [6] propose Fas-
tRNN/FastGRNN by adding residual connections and gating
on the standard RNNs, which outperforms LSTM and GRU
in prediction accuracy with fewer parameters. Other works
consider compressing word embeddings directly to reduce the
total number of parameters in RNN models [12], [22]. Unlike
the above approaches, we design a tiny RNN model with fewer
parameters in embedding and hidden states layers resulting in
much smaller model size. We train the tiny model in a novel
training scheme that minimizes the information loss via layer-
wised feature mapping and soft label knowledge distillation
with a novel certifiably robust defense method.

B. Mutual Information

Mutual information (MI) measures the mutual dependence
between two variables. More specifically, it quantifies the
“amount of information” obtained about one random variable
by observing the other random variable. There is a vast
literature on how to estimate MI. These approaches can be
roughly categorized into four classes. The first class partitions
the two variables into a finite number of bins of equal or
unequal (adaptive) size and estimates MI based on discrete
counts in each bin [23]. However, such methods suffer from
the curse of dimensionality and are not practical to estimate MI
of the high dimension embeddings and hidden state features
in our DNN model. The second class first constructs kernel
density estimates and then numerically integrates such approx-
imate densities to estimate MI [24]. These approaches need
a careful choice of the bandwidth parameters and the kernel
functions limiting their applications. The third class applies
neural-network-based estimation and trains a deep learning
model to estimate the density ratio of the variables for MI
estimation [25]. Such deep learning estimators are usually
differentiable and scale well to high dimensions and large
sample sizes. However, training a separate neural network
is hardly justified and violates our desire to achieve tiny
models. Therefore, we focus on the last class, which estimates
MI from the k-nearest neighbor statistics [26]. In particular,
the Kraskov–Stogbauer–Grassberger (KSG) estimator [26] has
been demonstrated to measure the similarity of word em-
beddings efficiently in [15]. We apply (KSG) estimator to
calculate and maximize MI between the features learned from
the large and tiny models in our training scheme to minimize
the information loss in compression.

C. Adversarial Robustness for Text Classification

Text adversarial attack is a severe problem in NLP ap-
plications. Attackers can mislead the text classifiers with a
small amount of modification, e.g., replacing a certain number
of characters or words. There are two types of adversarial
attacks: character-level and word-level. Character-level attacks



Fig. 1: Illustration of our GradMASK on a sample form AG’s News dataset. Given an original text at the top, an adversarial example is
generated by replacing the word “companies” with “c0mpanies” and “games” with “matches”. The category of the original text is science,
while the adversarial example misleads the model to predict it as sports due to the perturbations. We get the top-5 important words based
on their gradient scores, such as “service”, “matches”, “authenticates”, “offer”, and “c0mpanies”. Taking the adversarial example and the
index of the top-5 words, GradMASK generates a set of masked adversarial samples by replacing these words with [MASK] iteratively. The
pre-trained large model generates the logits for each sample. We take the average logits from the generated logits as the final logits (with
the largest score on science) to be used in soft label knowledge distillation in our training scheme. ⊕ here denotes average operation.

generate adversarial examples that are very similar to the orig-
inal examples by deleting, inserting, and modifying characters,
such as DeepWordBug [27], Hotflip [28] and DeepFool [29].
Word-level attacks craft adversarial examples by modifying
words while maintaining grammatical correctness and seman-
tic consistency, e.g., PWWS [30] and SPGD [31].

Many methods have been proposed to defend the character-
level attacks by recognizing or even correcting the perturbed
characters [32], [33]. It is more difficult to defend word-
level attacks since the perturbations have the correct spelling,
grammar, and semantics. There are mainly three types of
defense methods against word-level attacks in the literature:
word re-encoding [34], adversarial training [35], [36] and
adversarial data augmentation [17], [37]. Our work focuses on
adversarial data augmentation, which augments the original
training data with adversarial examples. The model trained
with adversarial data augmentation obtains improved robust-
ness to the perturbations.

Several works discuss that a model is certified robust when
it is guaranteed to give the correct answer under any attacker,
no matter the strength of the attacker and no matter how the
attacker manipulates the input texts [16], [38]. Zeng et al. [17]
propose a certifiably robust defense method named RanMASK
by randomly masking a certain proportion of the words in
an input text. However, RanMASK randomly masks several
words in the adversarial example without considering the
efficiency and heavily relies on the total number of the masks.
We further propose an improved masking method leveraging
the gradient to sort the words to be masked. Our proposed
method is more efficient and does not require a large number
of masked adversarial examples.

III. METHOD

A. KSG Mutual Information Estimator

We denote MI of two variables X and Y as:

I(X;Y) =

∫∫
pXY(x, y) log

pXY(x, y)

pX(x)pY(y)
dxdy, (1)

where pXY(x, y) is the joint density of X and Y. pX(x) =∫
x
pXY(x, y)dx and pY(y) =

∫
y
pXY(x, y)dy are the

marginal densities. Given two features (i.e., embeddings and
hidden states in RNN models) X and Y learned from the
large and tiny models, our goal is to maximize I(X;Y) in
our training scheme in order to minimize the information loss
in model compression. However, it is difficulty to estimate MI
for continuous variables since the joint and marginal densities
are not known in practice.

Although there are many existing works on estimating MI,
most of them are not suitable for our particular scenario,
as discussed in Section II-B. The KSG estimator has been
demonstrated to admit a particularly elegant expression for
the similarity measurement of word embeddings [15]. Thus,
we employ the KSG estimator to measure and maximize MI
between two features (i.e., the embeddings and hidden states
features) during the feature mapping process in our training
scheme. We briefly illustrate how the KSG estimator can be
applied to estimate MI here and refer the reader to [26] for its
full derivation and justification.

MI can be equivalently expressed as I(X;Y) = H(X) +
H(Y) − H(X,Y), i.e. the difference between the sum of
marginal entropies and the joint entropy. Thus, it is sufficient
to estimate various entropies in the above equation in order to
estimate MI. Kozachenko et al. [39] first propose to estimate
these differential entropies based on the nearest neighbour
statistics. Recently, Kraskov et al. [26] modify this idea and
construct the KSG estimator of MI as:

KSG(X;Y) = ψ(D) + ψ(k)−
D∑

d=1

(ψ(nx[d] + 1) + ψ(ny[d] + 1)),
(2)

where D is the embedding dimension, k denotes the number of
nearest neighbours, and ψ(x) = Γ′(x)/Γ(x) is the digamma
function. nx[d], ny[d] are certain nearest neighbour statistics,
which are obtained by counting the number of neighbors that
fall within less than ϵ[d] from xd and yd in the marginal spaces
X and Y. ϵ[d] here denotes the distance from zd = (xd, yd)



Fig. 2: Architecture of our tiny model training scheme. The first two feature mapping layers maximize the mutual information between the
features from the large and tiny models. We apply our certified robust method GradMASK in the soft label knowledge distillation layer to
improve the robustness of our tiny model. Finally, a task loss objective function is applied for the main classification tasks.

to its k-nearest neighbor in the joint space (X,Y). Finally,
we set k as 3 and apply Equation 2 to approximately estimate
MI in our experiments.

B. GradMASK: Certified Defense Method

Given an original input x = (x1, · · · , xn), the adversarial
attacks generate an adversarial example x′ = (x′1, · · · , x′n) by
perturbing at most m ≤ n words in x. We say x′ is a good
adversarial example of x if:

f(x′) ̸= y, ||x− x′|| ≤ m . (3)

y here denotes the group truth, and ||x−x′|| =
∑n

i=1 I{xi ̸=
x′i} is the Hamming distance, where I{·} is the indicator
function. In this work, we consider both character-level per-
turbations where x′i is a visually similar misspelling or typo of
xi (e.g., Replaceone) and word-level perturbations where x′i
is any of xi’s synonyms (e.g., PWWS). If a model f can give
consistently correct predictions for all the possible adversarial
examples x′ regardless the type of perturbations under the
constraint of ||x − x′|| ≤ m, we say it is certified robust
against the adversarial attacks.

We propose a saliency guided mask operation named Grad-
MASK by iteratively masking the words with high gradient
values, i.e., more important words for model predictions.
Saliency methods use gradient calculations to assign an im-
portance score to individual features, reflecting their influences
on the model prediction [40]–[42]. The gradient of the model
output f(x) with respect to the input x is given by ∇xf(x).
Let S(·) be a sorting function such that Sj(Z) is the jth

largest element in Z. Hence, S(∇xf(x)) denotes the sorted
gradients. We define GradMASK as M such that Mk(S(x);x)
replaced all xi where S(xi) ∈ Sj(xi)

k
j=0 with a special token

[MASK]. The masked words can simply be encoded as the
embedding of [MASK]. For example, if x = “A, B, C, D, E”
and S(∇xf(x)) = “B, C, A, D, E”, M2(S(x);x) generates
the masked sample as xmask = “A, [MASK], [MASK], D, E”.
Specifically, we generate a set of x′

mask for the adversarial

example x′ as adversarial data augmentation with different k
values (i.e., 1-5). We show an illustrated example in Fig. 1.
For each adversarial example x′, we totally generate 5 masked
adversarial examples in our experiments.

Our certified defense method trains the tiny model by
distilling the soft labels (or logits) generated from the large
model, which ensembles the outputs of a number of masked
adversarial samples. In particular, let flarge : xmask → y be
the larger classifier, which is trained to classify the masked
adversarial samples. The tiny model ftiny applies knowledge
distillation with objective loss function as:

Lkd = KL(Softmax(ỹlarge/T ),Softmax(ytiny/T )), (4)

where KL denotes the Kullback–Leibler (KL) divergence loss.
This soft label knowledge distillation is attributed to not only
the privileged information on similarities among classes but
also the label smoothing regularization. It can also accelerates
the training convergence [43]. T here is the temperature to
soften the outputs, which make the tiny model’s logits ytiny

more closely resembled the large model’s average logits ỹlarge

ỹlarge is the average of the logits produced by the large
model over all the individual masked adversarial samples:
ỹlarge =

∑k
i=1 yi/k. k here denotes the number of generated

masked adversarial samples. ỹlarge further prevents the attacks
from effectively identifying the weakness of our models. As a
result, the tiny model can classify the original input x robustly
against any adversarial attack that is allowed to perturb a
certain number of words at either character or word level.

C. Tiny Model Training Scheme

Fig. 2 illustrates our training scheme, which is composed of
two feature mapping layers to maximize mutual information, a
soft label knowledge distillation layer for certified robustness,
and a final target classification.

We denote an input text as x = {x1, . . . , xi, . . . , xn}, where
i is the index and n is the number of words. The first layer in
most NLP models applies an embedding layer with trainable



parameters We ∈ Rd×V to map each word xi to a fixed-length
d-dimension vector ei ∈ Rd, where V denotes the vocabulary
size. The embedded word vectors e are processed by the
remaining layers. To retain sufficient embedding information,
most models use a large vocabulary size V (ranging from
hundreds of thousands to millions) and a high embedding
dimension d (e.g., 100 or higher), resulting in a huge number
of parameters in We. In practice, the embedding parameters
account for 80% of the total parameters. Therefore, it is desired
to decrease the embedding parameters for deploying NLP
models on memory-constrained mobile devices.

As there is a minimum required vocabulary size to achieve
a specific performance [44], we propose a low dimension (i.e.,
5, 10, and 20) embedding layer in the tiny model to decrease
the number of parameters in We (i.e., from 2M to 100K).
In order to mitigate the embedding information loss caused
by the low dimension, we apply a feature mapping method
that allows the tiny model to learn embedding information
from the pre-trained large model via maximizing the mutual
information between the embedded features. In more detail,
a regularization term is added into our training objective to
maximize I(el, et), which is measured by the KSG estimator.
el and et here denote the embedded features from the large
and tiny models, respectively.

As shown in Fig. 2, following the embedding layer is the
LSTM layer. The number of parameters in LSTM layer can
be calculated as: 4×h×((d+1)+h) [45], where h is the size
of hidden state and d is the input size. So h greatly affects the
number of parameters. As such, we set a small hidden state
size in LSTM hidden layer without using attentions, short-
cut connections, or other sophisticated additions to reduce
the number of parameters in the tiny model. Similarly, we
maximize I(hl,ht) during the hidden state feature mapping.

The last layer in our training scheme exploits soft label
knowledge distillation, which enforces the tiny model to mimic
the prediction behavior of the large model by training the
former with more informative soft labels generated by the
latter [5]. We further apply our certified defense method in
this layer to make the tiny model robust against different
adversarial attacks as presented before.

Our general training objective function consists of several
components, formally:

L = λ1Lt + λ2Lkd − λ3(Ie + Ih) (5)

where Lt = CE(y, ŷ) denotes the CrossEntropy loss for text
classification task. Lkd is the soft label knowledge distillation
loss as described in Equation (4). Ie and Ih are two regular-
ization terms representing I(el, et) and I(hl,ht), respectively.
The negative symbol means maximizing these two terms. In
this way, these two regularization terms help increase the
mutual information between the embedding and hidden state
features of the tiny and pre-trained large models. λ1, λ2, λ3
are tuning parameters to leverage the relative importance of
different terms in our objective function.

IV. EXPERIMENT SETUP

Datasets: Our experiments are conducted with multiple text
classification tasks, such as sentiment analysis (Amazon and
Yelp), news categorization (AG’s News), and topic classifica-
tion (Yahoo). We keep the same training and test set splitting
as [46]. Statistics of the datasets are listed in TABLE I.

Dataset #Training #Testing #Class
Amazon 3,600,000 400,000 5
Yelp 560,000 38,000 5
AG’s News 120,000 7,600 4
Yahoo Answers 1,400,000 60,000 10

TABLE I: Datasets statistics details

Environment: Our models are implemented in PyTorch with
two NVIDIA GeForce RTX 3090 GPU and a 24Gb memory.
Adam optimizer is utilized, and the learning rate is consistently
set as 0.001 in all the experiments. All models are trained in 20
epochs with batch size 64. We fine tune the hyper-parameters
with several values and use the optimal selections, i.e., T is
as 3, λ1, λ2, λ3 are 0.5, 0.5, 0.8, respectively.

A. Adversarial Attacks

To evaluate the certified robustness of our tiny model,
we consider both character-level (i.e. Replaceone [27] and
Gradient [47]) and word-level (i.e. PWWS [30]) adversarial
attacks. These attacks are one-off attacks, which are more
efficient and with minimal alteration that is more suitable for
real-world applications. We use the same settings as in [27],
[30] for our experiments. In more detail:
Replaceone: Gao et al. [27] apply different black-box scor-
ing functions and word transformation methods to generate
adversarial samples with minimum word changes. We use
Replaceone, an efficient yet effective scoring function, to find
the most important words, then swap two adjacent letters to
generate new words in the adversarial samples.
Gradient: Samanta et al. [47] propose a white-box attack that
uses gradients to identify salient words in the original samples
and modifies them to generate adversarial samples.
PWWS: Ren et al. [30] propose a white-box attack us-
ing a new word replacement order determined by both the
word saliency and the classification probability. The generated
adversarial samples are lexically/grammatically correct and
semantically similar to the original samples.

B. The Compared Methods

Our goal is to develop an adversarially robust tiny model
for NLP tasks, which achieves competitive performance in
classifying both clean and adversarial samples and satisfies
the on-device resource constraints. We compare with two
existing on-device compressed neural network models for NLP
applications (i.e., SGNN [20] and PRADO [21]) in terms of
the test performance using clean samples only since (1) they
are not designed for defending against adversarial attacks and
(2) there are no source codes available. Moreover, our tiny
model is compared with the compact model, FastGRNN [6],



Attacks Amazon Yelp Yahoo Answer AG’s NEWS
CE Ours CE Ours CE Ours CE Ours

Clean 57.4 61.8 59.4 62.2 68.4 72.3 86.5 90.2
PWWS 25.1 36.4 29.4 43.2 32.4 46.2 33.3 57.6
Gradient 35.0 56.6 32.7 56.9 38.1 57.4 38.1 83.7
Replaceone 33.2 46.9 36.2 49.8 33.6 50.3 34.6 61.1

TABLE II: Comparison of classification performance and adversarial robustness of the tiny models trained with the conventional CE loss
(CE) and our training schemes (Ours) on four benchmark datasets. Clean here indicates natural test samples. The embedding dimension (d)
and hidden state size (h) are set as 5 in the tiny models. PWWS, Gradient, and Replaceone are three different adversarial attacks covering
character-level and word-level perturbations. Best performances are bold-faced.

Type Method #Params
Yelp Amazon Yahoo Answers

Clean Gradient Replace Clean Gradient Replace Clean Gradient Replace
Acc AdvAcc AdvAcc Acc AdvAcc AdvAcc Acc AdvAcc AdvAcc

Tiny

Ours(tiny) 100K 62.2 56.9 49.8 61.8 56.6 46.9 72.3 57.4 50.3
PRADO 175K 64.7⋆ - - 61.2⋆ - - 72.3⋆ - -
SGNN 500K 35.4⋆ - - 39.1⋆ - - 36.6⋆ - -
FastGRNN 250K 26.7 20.7 20.6 30.2 20.4 19.6 28.3 19.7 21.6

Large

Ours(large) 2M 63.9 50.6 43.9 62.3 50.9 40.3 73.2 49.3 51.2
CNN-char 11M 62.0 45.7 40.8 59.6 47.0 42.1 71.2 43.5 44.9
CNN-word 8M 60.5 44.8 37.6 57.6 47.6 41.1 71.2 51.9 46.6
LSTM 2M 58.2 43.2 42.6 59.4 45.7 41.3 70.8 40.0 45.1

1 -: not applicable. ⋆: results reported in [21].

TABLE III: Comparison of our tiny models with other compressed, compact and large models. Best performances are bold-faced according
to model type.

which is initially designed for IoT applications and recently
demonstrates promising performance in NLP applications.
Although our tiny model is intended for on-device deployment,
we compare it with some on-cloud large models that are
designed to exploit the full extent of cloud resources, i.e., char-
level CNN, word-level CNN, and LSTM [46] to demonstrate
our competencies. We report the comparison results in TABLE
II and TABLE III.

C. Evaluation Metrics

Our experiments consider the performance of the models
trained with clean texts and their adversarial robustness to-
wards various attacks. First, accuracy (Acc) is used to evaluate
the models’ performance for clean text classification tasks.
Then, we report the adversarial accuracy (AdvAcc) to evaluate
the robustness of the models on thousands of adversarial
examples generated from different attacks. Finally, we report
the models’ number of parameters to compare their sizes.

V. RESULTS AND DISCUSSION

A. Performance Comparison

TABLE II shows the performance and adversarial robustness
of the tiny models, either trained conventionally with cross-
entropy (CE) loss only or with the proposed training scheme
(Ours). It is observed that our tiny models achieve an overall
better performance on all the evaluation metrics. Our training
scheme exploits feature mapping and soft label knowledge
distillation enabling the tiny models to learn information
from the pre-trained large models. As a result, it can reduce
the information loss during model compression, leading to
significant improvement in clean sample accuracy. In addition,
the tiny models trained with soft label knowledge distillation

in our training scheme improve their adversarial robustness
compared to the ones trained with the CE loss in a vast
majority of comparisons, highlighting the advantage of our
certified defense method.

We further compare the performance of our tiny models with
the other compressed, compact models and large models in
both clean and adversarial example settings (wherever applica-
ble). Note that the results of PRADO [21] and SGNN [20] are
cited directly from the original papers since no source codes
are made available. Therefore, we only compare the clean
sample accuracy with these two compressed RNN models. Our
model achieves the best performance among all the tiny mod-
els, as shown in TABLE III. We observe the better performance
of our tiny model on adversarial examples than FastGRNN
showing more robustness against various adversarial attacks.
Moreover, there are fewer parameters in our tiny model than
PRADO and FastGRNN, demonstrating a much smaller model
size, i.e., 100K compared to 175K/250K. Our tiny model even
outperforms most competing large models in both clean and
adversarial accuracies. Compared with our large models with
2M parameters, our tiny models with much fewer parameters
(100K) achieve competitive clean sample accuracies. Since we
apply our certified defense method in the soft label knowledge
distillation layer while training the tiny models (shown in Fig.
2), our tiny models obtain improved adversarial robustness
resulting in higher adversarial accuracies compared to our
large models.

B. Certified Adversarial Robustness

We compare our certified defense method with two other de-
fenders. The data augmentation method augments the original
training data with adversarial examples in order to improve the



model robustness, which is one of the most successful defense
methods for NLP models [48]. RanMASK [17] is applied in
the logits method, which takes the average of logits produced
by the base classifier over all the individual random samples
as the final prediction. Our GradMASK achieves the best per-
formance on AG’s News dataset towards all three adversarial
attacks, covering both character-level and word-level attacks,
as shown in TABLE IV. Our method significantly improves
model robustness against the Gradient attack since we mask
the adversarial examples using the gradient information. Since
PWWS is a word-level attack where the perturbations have the
correct spelling, grammar, and semantics, it is more difficult
to defend, resulting in smaller adversarial accuracy than the
two character-level attacks.

Method Gradient Replaceone PWWS
Data Augmentation 51.6 49.1 45.8
RanMASK (logits) 65.4 52.7 51.2
GradMASK (ours) 83.7 61.1 57.6

TABLE IV: Comparison of certified adversarial robustness on AG’s
News dataset. We report the adversarial accuracy (AdvAcc) here.
Our method outperforms the other two defenders towards all three
adversarial attacks.

C. Model Size Selection

In TABLE V, we investigate the effect of embedding dimen-
sion (d) and latent feature size (h) on the model compression
performance. We set both d and h values at 100 for our large
model, resulting in the model size of 2M parameters. Whereas
for the three compared tiny models, we set both d and h values
at 5, 10, or 20, resulting in the model sizes of 100K, 200K, and
400K parameters, respectively. The tiny models with larger d
and h perform slightly better due to smaller information loss.
Since the performance differences between these tiny models
are small, we select the smallest one, in which the embedding
dimension (d) and latent feature size (h) are set to be 5, as
our final tiny model to be deployed on mobile devices.

Dataset Dimension Clean Replaceone Gradient
Acc AdvAcc AdvAcc

Amazon
5 61.8 46.9 56.6
10 61.9 47.2 57.2
20 62.1 47.6 58.0

Yelp
5 62.2 49.8 56.9
10 62.4 51.4 58.4
20 62.7 51.9 59.3

Yahoo Answers
5 72.3 50.3 57.4
10 72.5 50.6 57.8
20 72.6 51.3 58.2

AG’s News
5 90.2 61.1 83.7
10 90.7 62.3 84.4
20 91.1 62.9 85.0

TABLE V: Comparison of tiny models with diverse sizes. 5, 10, and
20 here represent the embedding dimension (d) and hidden state size
(h). The tiny models slightly benefit from the larger sizes in clean
and adversarial accuracies.

D. Ablation Study

Since our training scheme consists of several feature map-
ping and knowledge distillation layers, we construct an ab-
lation study to examine the effectiveness of the key compo-
nents in TABLE VI. Obviously, the tiny models with all the
components achieve the best performance in both clean and
adversarial sample accuracies on all datasets. These experi-
mental results further demonstrate that all these components
contribute to improving our tiny model on both classification
performance. Significantly, the soft label knowledge distilla-
tion is the most important to improve the certified adversarial
robustness since our GradMASK certified defense method is
applied in this component.

Dataset Layers Clean Replaceone Gradient
Acc AdvAcc AdvAcc

Amazon

w/o Ie 60.7 44.4 55.1
w/o Ih 60.3 45.6 56.1
w/o Lkd 59.1 36.8 34.6
All 61.8 46.9 56.6

Yelp

w/o Ie 61.6 47.4 55.4
w/o Ih 61.5 48.6 53.6
w/o Lkd 61.0 39.2 36.6
All 62.2 49.8 56.9

Yahoo Answers

w/o Ie 71.0 45.2 56.1
w/o Ih 71.4 45.3 53.6
w/o Lkd 70.9 40.8 35.3
All 72.3 50.3 57.4

AG’s News

w/o Ie 89.8 58.5 80.1
w/o Ih 90.0 59.6 76.6
w/o Lkd 89.4 35.7 38.5
All 90.2 61.1 83.7

TABLE VI: Contribution of different layers in our model. Ie and
Ih here denote the embedding and hidden state feature mapping,
respectively. Lkd represents the soft label knowledge distillation.

VI. CONCLUSION

In this work, we design,train, and apply tiny RNN mod-
els for on-device text classification tasks. To mitigate the
information loss in model compression, we design a training
scheme consisting of layer-wise feature mapping and soft label
knowledge distillation. We employ a certifiably robust defense
method to improve the robustness of tiny models against
both character-level and word-level adversarial attacks. The
tiny model with fewer parameters is small enough to be em-
ployed on resource constraints mobile devices. Our approach is
broadly applicable, generic, and scalable in other NLP applica-
tions. In future work, we will generalize our training scheme
to other on-device NLP tasks, such as Question Answering
and Neural Machine Translation. Furthermore, transformer-
based models (e.g BERT [49]) have gained much attention
dealing with NLP tasks recently. There are several recent
studies on compressing BERT models, e.g., MobileBERT [50].
These approaches mainly focus on model compression, while
none of them deals with model adversarial robustness. We will
extend our training scheme to the widely used transformer-
based models.
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