
ROBUST DETECTION OF ADVERSARIAL ATTACKS ON MEDICAL IMAGES

Xin Li

Wayne State University
Department of Computer Science

5057 Woordward Ave., Detroit, MI 48202
xinlee@wayne.edu

Dongxiao Zhu

Wayne State University
Department of Computer Science

5057 Woodward Ave., Detroit, MI 48202
dzhu@wayne.edu

ABSTRACT
Although deep learning systems trained on medical images
have shown state-of-the-art performance in many clinical pre-
diction tasks, recent studies demonstrate that these systems
can be fooled by carefully crafted adversarial images. It has
raised concerns on the practical deployment of deep learning
based medical image classification systems. To tackle this
problem, we propose an unsupervised learning approach to
detect adversarial attacks on medical images. Our approach
is capable of detecting a wide range of adversarial attacks
without knowing the attackers nor sacrificing the classifica-
tion performance. More importantly, our approach can be
easily embedded into any deep learning-based medical imag-
ing system as a module to improve the system’s robustness.
Experiments on a public chest X-ray dataset demonstrate the
strong performance of our approach in defending adversarial
attacks under both white-box and black-box settings.

Index Terms— Adversarial attacks, Medical images,
Deep learning, Lung disease classification

1. INTRODUCTION

With the development of deep learning algorithms and the
availability of high quality labeled medical imaging datasets,
deep learning based medical imaging systems have substan-
tially increased the accuracy and efficiency of the clinical pre-
diction tasks. For example, Daniels et al. [1] extract features
from X-rays for lung disease classification, Shaffie et al. [2]
detect lung cancer using computed tomography (CT) scans
and Reda et al. [3] make an early diagnosis of prostate cancer
using magnetic resonance imaging (MRI) scans. Recently,
several healthcare start-ups such as Zebra Medical Vision and
Aidoc announced U.S. Food & Drug Administration (FDA)
clearances for their AI medical imaging systems1. These FDA
approvals indicate that deep learning based medical imaging
systems are potentially applicable for clinical diagnosis in the
near future.

1https://www.mobihealthnews.com/content/north-
america/aidoc-zebra-medical-vision-announce-510k-
clearances-ai-image-analysis-software

Fig. 1. An adversarial attack against a medical image classi-
fier with perturbations generated using FGSM [4].

In parallel to the progress in deep learning based med-
ical imaging systems, the so-called adversarial images have
exposed vulnerabilities of these systems in different clinical
domains [5]. Adversarial images are inputs of deep learning
models that are intentionally crafted to fool image classifica-
tion models. Figure 1 shows how a clean image is manipu-
lated to attack a medical image classification system. With
only imperceptibly small perturbations added to a clean X-
ray image, the system incorrectly classifies “Pleural Thicken-
ing” as “Pneumothorax”. Consequently, without proper safe-
guards, users of such systems can be exposed to unforeseen
hazardous situations, such as diagnostic errors, medical reim-
bursement fraud and so on. Therefore, an effective defense
strategy needs to be implemented before these systems can be
safely deployed.

In response to the threat, several defensive techniques
have been proposed. One common strategy in natural imag-
ing domain is adversarial training, which enlarges the training
dataset with adversarial images to improve the robustness of
the trained Convolutional Neural Network (CNN) model.
However, this strategy is not perfect for medical imaging
datasets since a large number of diverse adversarial images
injected into training dataset can significantly compromise
the classification accuracy. To tackle this problem, Ma et al.
[6] build a logistic regression classifier based on features ex-
tracted from a trained CNN model to discriminate adversarial
images from clean images. However, the effectiveness of
this approach is restricted to the selected pre-defined attack
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methods. To overcome these limitations, Taghanaki et al.
[7] equip CNN models with a radial basis mapping kernel,
which transforms features onto a linearly well-separated man-
ifold to improve the class separation and reduce the influence
of perturbations. He et al. [8] discover that global depen-
dencies and contextual information can be used to improve
robustness. Thus, they propose a non-local context encoder
in medical image segmentation systems to defend against
adversarial attacks. Although both methods increase the ro-
bustness by modifying the network architecture, performance
of the system may be compromised by the trade-off between
accuracy and robustness [9] in practice.

In this paper, we propose a robust detection strategy for
adversarial images that can effectively thwart the adversarial
attacks against deep learning based medical image classifica-
tion systems. Inspired by [10], we focus on unsupervised ab-
normal detection using features extracted from a trained CNN
classifier. Our approach does not assume any prior knowl-
edge of attack methods, hence it can robustly defend against
diverse unseen attacks, white-box or black-box. Furthermore,
our defense strategy can be easily incorporated in any medical
imaging system without modifying the architecture nor com-
promising the performance. Thus it is sufficiently flexible for
a wide range of medical imaging problems with various im-
age formats. We use extensive experiments on a public X-ray
dataset to demonstrate the effectiveness of our proposed de-
fense approach.

2. METHODS

2.1. Motivation

The adversarial image is crafted by adding subtle perturba-
tions to the original image; as a result, the perturbations at
pixel level look like noise which do not impede human recog-
nition. However such noise is obvious at feature levels of
CNN models. We demonstrate these characteristics of ad-
versarial medical images by visualizing the feature maps of
a CNN model. In Figure 2a, given one clean X-ray image
(top left) and its adversarial counterpart (top right), the cor-
responding feature maps extracted from the first block of a
DenseNet-121 [11] are shown in bottom left and bottom right,
respectively. It suggests that adversarial perturbations, albeit
subtle at pixel level and hard to be detected by human eyes,
lead to substantial “noise” at feature levels.

Furthermore, this “noise” can be exacerbated by the
convolution-pooling operations implemented in CNN models
during forward propagation [12], and finally leads to mis-
classification. On the other hand, since the magnitude of
perturbations increases layer by layer, the clean and adversar-
ial images can be easily distinguished based on the high-level
features. This assumption is verified from Figure 2b, which
visualizes feature distributions of clean and adversarial X-ray
images extracted from the final fully connected layer of the

Fig. 2. (a) Visualization of input images and feature maps
from the first block of a DenseNet-121 [11]. (b) Visualization
of feature distributions from the final fully connected layer of
clean X-ray images (green) versus adversarial X-ray images
(red).

DenseNet-121 using t-SNE method. All X-ray images are
randomly selected, which cover different types of patholo-
gies. It is obvious that the clean images can be modeled as
a unimodal multivariate density (green) whereas adversarial
images (red) can be treated as outliers. Different from nat-
ural images that may be affected by changes in lighting and
position, medical images are highly standardized since they
are generally captured with pre-defined and well-established
positioning and exposure. Consequently, the trained deep
learning based imaging system is more sensitive to these
crafted perturbations.

2.2. Framework

We propose to augment the medical image classification sys-
tem with an adversarial image detection module. Figure 3
illustrates an example framework of the chest X-ray disease
classification system equipped with our detection module.
After training the CNN classifier with all clean images to
extract the high-level features for learning the detection mod-
ule, the lower panel illustrates the process of detection and
testing. Given a new (clean or adversarial) image, the system
extracts features using the trained CNN classifier as the input
of detection module. The input image is rejected if detected
as an adversarial image, otherwise, it continues to the loss
layer to predict classification labels. To accommodate diverse
adversarial attacks, we use unsupervised anomaly detection
techniques for the detection module. Specifically, we use uni-
modal multivariate Gaussian model (MGM) as the attacker
detection method whereas Isolation Forest (ISO) [13] and
One-class SVM (OCSVM) [14] as competing methods.

The high-level feature distribution of clean images can be
modeled using MGM: y ∼ N (µ,Σ), where y = H(x) repre-
sents the feature extracted using the final fully connected layer
given a clean input image x. The µ ∈ Rd and Σ ∈ Rd×d are



Fig. 3. The proposed defense framework for a chest X-ray
disease classification system equipped with our MGM detec-
tion module.
mean vector and covariance matrix, where d denotes dimen-
sion of MGM. Given features extracted from clean training
images Y = {y1, . . . , yn}, we estimate µ = 1

n

∑n
i=1 yi and

Σ = 1
n

∑n
i=1 (yi − µ)(yi − µ)T + λI, where λI is the non-

negative regularization added to the diagonal of covariance
matrix.

After training MGM, for a new (clean or adversarial)
image x∗, we compute the probability of y∗ = H(x∗)
belonging to the clean image distribution by: p(y∗) =

1

(2π)
d
2 |Σ|

1
2

exp (− 1
2 (y∗ − µ)TΣ−1(y∗ − µ)). However, in

practice, the high dimension, i.e., d = 1024, makes p(y∗)
computational expensive, and the value of p(y∗) is so close
to zero that cause arithmetic underflow. To overcome these
technical difficulties, we use Cholesky decomposition to re-
parametrize the covariance matrix: Σ = RRT and rewrite
the probability density function into log form: log p(y∗) =

− 1
2 [2×(

∑d
i=1Rii)+‖R−1(y∗−µ)‖2+d log(2π)]. Finally,

as shown in the Figure 3, x∗ will be detected as an adversarial
image and rejected if log p(y∗) is lower than a threshold. The
threshold can be determined by keeping 95% of the training
data as clean images.

ISO algorithm builds an isolation tree (itree) by recur-
sively dividing Y with a random feature and a random cut-
off value. By creating many itrees, the average path length of
unsuccessful search c(n) is used to assign the anomaly score:
s(y, n) = 2(−E(h(y))/c(n)), whereE(h(y)) is the average path
length of a single input y. The new (clean or adversarial) im-
age x∗ is rejected if s(y∗, n) is close to 1. OCSVM is an-
other competitor used in our experiment, it can be summa-
rized as mapping the clean training data y to a feature space
and finding the maximal margin which separates the mapped
data from the origin. In our context, let Φ to be the kernel
function that transforms y to another space, and w and ρ are
the parameters to be learned to characterize the maximal mar-
gin. After training, given a new (clean or adversarial) image

x∗, it will be detected as an adversarial image if the decision
function f(y∗) = sgn((w · Φ(y∗))− ρ) = −1.

3. EXPERIMENTS

3.1. Settings

Dataset To verify the performance of our proposed defense
approach on medical image classification, experiments are
conducted on a large public chest X-ray dataset. The NIH
ChestX-ray14 [15] contains 112,120 frontal-view chest X-
rays taken from 30,805 patients, where around 46% images
are labeled with at least one of 14 pathologies. Following the
pre-processing of [15], we split the dataset into training, val-
idation and testing datasets by a ratio of 7:1:2 for the image
classification system which is DenseNet-121 in our experi-
ment. The features extracted from the entire clean training
and validation datasets are used for training and validating the
detection module. We then randomly select 1000 clean im-
ages from the testing dataset for crafting adversarial images
using four adversarial attack methods, i.e., fast gradient sign
method (FGSM) [4], projected gradient descent (PGD) [16],
basic iterative method (BIM) [17], and momentum iterative
method (MIM) [18] (the winner of NIPS 2017 adversarial at-
tacks competition). For each attack method, we craft 1000
adversarial images based on the 1000 clean images.
Attacks We evaluate our defense approaches (MGM, ISO and
SVM) against the four attack methods mentioned above. Two
attack settings are used in the experiment. 1) White-box At-
tack: attackers know all details of the true CNN classifier
(DenseNet-121), and directly use gradients from the model
to craft adversarial images. 2) Black-box Attack: attackers
know nothing about the true CNN classifier and use an arbi-
trary substitute classifier (ResNet-50 [19]) to craft adversarial
images. Since the disease classification problem is a mul-
tiple binary classification problem and attackers would not
know the true label, for each clean image, we use the class
with the highest predicted probability to craft the adversarial
images. The perturbations are calculated by using the gradi-
ent of cross-entropy loss function on the selected class. To
ensure the perturbations are subtle enough to remain unde-
tectable from human recognition, the maximum perturbation
is limited by 0.05 for black-box setting and 0.02 for white-
box setting.
Metrics We evaluate our defense approach against each at-
tack method based on detection performance and follow-up
classification performance. The detection performance is
evaluated by F1 score, representing the best trade-off be-
tween precision and recall. For comparing performance of
the follow-up classification, we use AUROC weighted av-
erage from 14 different classes because ROC curve has the
advantage of determining the optimal cut off values for clas-
sification decisions based on the class probabilities. 2

2Code is available at https://github.com/xinli0928/MGM
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White-box Attack (F1 / AUROC ± STD)
Attacks FGSM BIM PGD MIM

No Defense 0.500 / 0.702± 0.063 0.500 / 0.617± 0.071 0.500 / 0.616± 0.071 0.500 / 0.591± 0.063
ISO 0.838 / 0.786± 0.077 0.874 / 0.810± 0.083 0.874 / 0.810± 0.083 0.874 / 0.810± 0.083

SVM 0.870 / 0.783± 0.077 0.931 / 0.816± 0.083 0.931 / 0.816± 0.089 0.931 / 0.816± 0.094
MGM 0.936 / 0.801± 0.089 0.975 / 0.820± 0.089 0.975 / 0.820± 0.089 0.975 / 0.820± 0.089

Black-box Attack (F1 / AUROC ± STD)
Attacks FGSM BIM PGD MIM

No Defense 0.500 / 0.749± 0.077 0.500 / 0.737± 0.077 0.500 / 0.741± 0.077 0.500 / 0.719± 0.077
ISO 0.871 / 0.810± 0.083 0.759 / 0.777± 0.089 0.735 / 0.776± 0.089 0.837 / 0.801± 0.083

SVM 0.903 / 0.812± 0.077 0.777 / 0.781± 0.083 0.754 / 0.776± 0.083 0.859 / 0.792± 0.089
MGM 0.958 / 0.819± 0.083 0.924 / 0.809± 0.089 0.903 / 0.808± 0.083 0.957 / 0.818± 0.083

Table 1. F1 scores are shown for comparing detection performance and AUROC values weighted average over 14 different
classes with standard deviation are shown for comparing classification performance of each attack-defense combination.

3.2. Results

Table 1 shows the detection performance for each attack-
defense combination under both white-box and black-box
settings. Since the testing dataset consists of 1000 clean
images and 1000 adversarial images, the F1 score of the
classification system without a detection module (the weak
baseline) is always 0.5. All detection methods demonstrate
robust performance against these attacks under the white-box
setting with MGM has the best performance. We note that the
adversarial images crafted using one-step FGSM [4], an ear-
lier adversarial attack method, are more effective compared
to others under the white-box setting evident by a lower F-1
score. Similar to the white-box setting, MGM demonstrates
the best performance among all detection methods against all
attacks under the black-box setting where the architecture of
the true CNN classifier is unknown to the attackers. However,
the trend is reversed under the black-box setting that adver-
sarial images crafted using one-step FGSM are easier to be
detected compared to others. We explain this phenomenon
below.

Since detection is based on the features extracted from
the true CNN classifier, an adversarial image is easier to be
detected if it is contaminated with more “noise” at feature lev-
els. Under the white-box setting, adversarial images crafted
from the iterative methods (e.g., BIM, PGD, MIM) are easier
to be detected because they iteratively increase perturbations
to maximize the “noise” at feature levels. However, under
the black-box setting, adversarial images are crafted using a
substitute classifier (ResNet-50), which can be quite different
from the true CNN classifier (DenseNet-121). Thus adver-
sarial images crafted by the iterative methods can maximize
“noise” for the substitute classifier but not for the true CNN
classifier, making it much lower “noise” at feature levels thus
harder to be detected.

We also report the follow-up classification performance in
Table 1 under both white-box and black-box settings, which is

consistent with detection performance. The system equipped
with the MGM detection module has the best performance
among all detection methods under both settings evident by
the highest AUROC values. It is interesting to point out that
the proposed framework with a detection module, such as
MGM under the white-box setting, can has a better classi-
fication performance on mixed clean and adversarial images
(0.820) than the true CNN classifier tested only on clean im-
ages (0.817), which is possibly due to: (1) the detection mod-
ule effectively rejects all adversarial images, ensuring the sys-
tem’s non-compromised classification performance as using
a clean dataset, and (2) the detection module can also er-
roneously reject some clean images as adversarial images.
These clean images can be problematic for the CNN classifier
since they are at tails of the distribution. Therefore, rejecting
these clean images can improve classification performance.

4. CONCLUSION

In this paper, we propose an adversarial image detection mod-
ule for medical imaging classification systems by modeling
high-level features learned from clean images using a stan-
dard CNN classifier. This strategy does not need any prior
knowledge of attack methods nor modification of the CNN
architecture. We evaluate the performance of our method un-
der both white-box and black-box settings using a benchmark
chest X-ray dataset. This effective strategy can be combined
with other defense methods and is sufficiently flexible for
many medical imaging applications with diverse image for-
mats. We expect deployment of our approach would enhance
the security of deep learning based medical imaging classifi-
cation systems. For future works, we plan to extend the cur-
rent method to accommodate more complex datasets that may
follow multimodal distributions, and investigate new dimen-
sion reduction approaches to reduce the number of training
examples required to estimate the distribution.
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