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a b s t r a c t 
Survival analysis has been developed and applied in the number of areas including manufacturing, fi- 
nance, economics and healthcare. In healthcare domain, usually clinical data are high-dimensional, sparse 
and complex and sometimes there exists few amount of time-to-event (labeled) instances. Therefore 
building an accurate survival model from electronic health records is challenging. With this motivation, 
we address this issue and provide a new survival analysis framework using deep learning and active 
learning with a novel sampling strategy. First, our approach provides better representation with lower 
dimensions from clinical features using labeled (time-to-event) and unlabeled (censored) instances and 
then actively trains the survival model by labeling the censored data using an oracle. As a clinical as- 
sistive tool, we introduce a simple effective treatment recommendation approach based on our survival 
model. In the experimental study, we apply our approach on SEER-Medicare data related to prostate can- 
cer among African–Americans and white patients. The results indicate that our approach outperforms 
significantly than baseline models. 

© 2018 Elsevier Ltd. All rights reserved. 
1. Introduction 

Survival analysis has been applied in several real-world applica- 
tions such as healthcare, manufacturing and engineering in order 
to model time until the occurrence of a future event of interest 
(e.g., biological death or mechanical failure) ( Hosmer, Lemeshow, 
& May, 2011 ). Censoring attribute of survival data makes survival 
analysis different from the other prediction approaches. One pop- 
ular survival model is the Cox Proportional Hazards model (CPH) 
( Cox, 1992 ) which models the risk of an event happening based 
on linear combination of the covariates (risk factors). The major 
problem of Cox-based models is linear relationship assumption be- 
tween covariates and the time of event occurrence. Hence, there 
have been developed several models to handle non-linear relation- 
ship in survival analysis like as survival neural network and sur- 
vival random forest models ( Ishwaran et al., 2014 ). 

In the healthcare area, medical researchers applied survival 
analysis on Electronic Health Records (EHRs) to evaluate the 
significance of many risk factors in outcomes such as survival 
rates or cancer recurrence and subsequently recommend treatment 
schemes. There exist two specific challenges in survival analysis 
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from EHRs: (1) Clinical data is usually high dimensional, sparse 
and time-dependent which in this case applying traditional sur- 
vival approaches do not perform well enough to estimate the risk 
of a medical event, (2) In many health survival applications, la- 
beled data (time-to-event instances) are small, time-consuming 
and expensive to collect. In this situation, it is hard to learn a sur- 
vival model based on traditional approaches which able to predict 
the relative risk of patients precisely. 

To address the first challenge, recently, semi-supervised learn- 
ing using deep feature representation has been applied in number 
of areas and could improve the performance of different machine 
learning tasks as well as survival analysis. In other words, apply- 
ing unsupervised learning using deep learning can reduce the com- 
plexity of raw data and provide robust features with lower dimen- 
sions ( LeCun, Bengio, & Hinton, 2015 ). Using these represented fea- 
tures in the supervised learning algorithms (e.g., survival models) 
establishes a semi-supervised learning framework which achieves 
higher performance. 

To overcome the second challenge, active learning is well suited 
to get high accuracy when the labeled instances are small or label- 
ing is expensive and time-consuming ( Settles, 2010 ). Active learn- 
ing approach from censored data has been rarely addressed in the 
literature. However it has been widely used in the other aspects of 
health informatics where the labeled data are scarce. 

https://doi.org/10.1016/j.eswa.2018.07.070 
0957-4174/© 2018 Elsevier Ltd. All rights reserved. 
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According to the current works in the literature, no research has 

been conducted to overcome these two challenges by developing 
an integrated method for survival analysis. Although, there exist 
few studies in the literature that focus to one of these challenges, 
our goal is to address both of them simultaneously. In addition, 
several applications (especially in the healthcare domain) demand 
to develop such that integrated approach when they deal with a 
few amount of labeled instances that are high-dimensional and 
training a precise survival analysis model is difficult based on the 
current baselines. To address this research gap, first, we propose 
a novel survival analysis approach using deep learning and active 
learning termed DASA. Our method is capable to learn more accu- 
rate survival model using high dimensional and small size EHRs 
in comparison with some baseline survival approaches. Second, 
we introduce a personalized treatment recommendation approach 
based on our survival analysis model which can compare the rel- 
ative risks (or survival times) associate with different treatment 
plans and assign the better one. We evaluate our approach using 
SEER-Medicare dataset related to prostate cancer. We consider two 
racial subgroup of patients (African-American and whites) in our 
analysis and apply our model on each dataset separately. 

Our contributions in this research lie into three folds: (1) To the 
best of our knowledge, we propose the first Deep Active Survival 
Analysis approach with promising performance, (2) In our active 
learning framework we develop a new sampling strategy specifi- 
cally for survival analysis and (3) Our model with proposed treat- 
ment recommendation approach has highly potential to apply for 
evaluation of new treatment effect on new patients where the la- 
beled data is scarce. 
2. Background 

In this section, we review some basic concepts for modeling of 
survival analysis, active learning and deep learning. 
2.1. Introduction to survival analysis 

Survival analysis is a kind of statistical modeling where the 
main goal is to analyze and model time until the occurrence of 
an event of interest. The challenging characteristic of survival data 
is the fact that time-to-event of interest for many instances is un- 
known because the event might not have happened during the pe- 
riod of study or missing tracking occurred caused by other events. 
This concept is called censoring which makes the survival analysis 
different ( Wang, Li, & Reddy, 2017 ). The special case of censoring is 
when the observed survival time is less than or equals to the true 
event time called right-censoring, the main focus of our study. 

Since the censored data is present in survival analysis, the stan- 
dard statistical and machine learning approaches are not appropri- 
ate to analyze and predict time-to-event outcome because those 
approaches miss the censored/right-censored instances. Survival 
modeling provides different statistical approaches to analyze such 
censored data in many real-world applications. 

In survival analysis, a given instance i , represented by a triplet 
( X i , δi , T i ) where X i refers to the instance characteristics and Ti in- 
dicates time-to-event of the instance. If the event of interest is ob- 
served, Ti corresponds to the time between baseline time and the 
time of event happening, in this case δi = 1. If the instance event 
is not observed and its time to event is greater than the observa- 
tion time, Ti corresponds to the time between baseline time and 
end of the observation, and the event indicator is δi = 0. The goal 
of survival analysis is to estimate the time to the event of interest 
( T ) for a new instance X j ( Wang et al., 2017 ). 

2.1.1. Survival and hazard functions 
Survival and hazard functions are the two main functions in 

survival modeling. The survival function indicates the probability 
that the time to the event of interest is not less than a determined 
time ( t ) ( Kleinbaum & Klein, 2010 ). This function ( S ) is denoted by 
following formula: 
S(t) = P r(T > t) (1) 

The initial value of survival function is 1 when t = 0 and it 
monotonically decreases with t . The second function, hazard func- 
tion indicates the rate of occurrence of the event at time t given 
that no event occurred earlier. It describes the risk of failure (dy- 
ing) changing over time. The hazard function (or hazard rate or 
failure rate) is defined as following ( Kleinbaum & Klein, 2010 ): 
h (t) = lim 

δ(t) → 0 P r(t ≤ T ≤ t + δ(t) | T ≥ t) 
δ(t) (2) 

Survival and hazard function are non-negative functions. While 
the survival function decreases over time, the shape of a hazard 
function can be in different forms: increasing, decreasing, constant, 
or U-shaped. 
2.1.2. Cox Proportional Hazards (CPH) model 

There exist several models for survival analysis in the literature. 
Among all, Cox Proportional Hazards (CPH) model ( Cox, 1992 ) is 
the most popular model for survival analysis. CPH estimates the 
hazard function h ( x ) as a regression formulation: 
h (t, X i ) = h 0 exp(X i β) (3) 
where h 0 is the baseline hazard function which can be an arbitrary 
nonnegative function of time and X i refers to covariate vector for 
instance i , and β is the coefficient vector estimated after survival 
model training by maximizing the cox partial likelihood. Because 
the baseline hazard function h 0 ( t ) in CPH is not determined, we 
cannot use the standard likelihood function in training process. The 
partial likelihood is the product of the probability of each instance 
i at event time T i that the event has happened for that instance, 
over the summation of instances ( R j ) probability who are still at 
risk in this time ( T i ) ( Cox, 1992 ): 
L (β) = ∏ 

i = ,δi =1 
exp(X i β) ∑ 

j∈ R j exp(X j β) (4) 
2.1.3. Evaluation metric for survival analysis 

Since the censored instances exist in survival data, the standard 
evaluation metrics such as mean squared error and R-squared are 
not appropriate for evaluating the performance of survival analysis 
( Heagerty & Zheng, 2005 ). In survival analysis, the most popular 
evaluation metric is based on the relative risk of an event for dif- 
ferent instances called concordance index or c-index. This measure 
is defined as following formula: 
1 
N ∑ 

i,δi =1 
∑ 

j,y i <y j I[ S( ̂  y i | X i ) < S( ̂  y j | X j )] (5) 
Where N refers to the all comparable instance pairs and S is the 

survival function. The main motivation for using c-index in survival 
analysis is originated from the fact that the medical doctors and 
researchers are often more interested in measuring the relative risk 
of a disease among patients with different risk factors, than the 
survival times of patients. 

In general, the survival analysis models can be divided into two 
main categories: (1) statistical methods including non-parametric, 
semi-parametric and parametric and (2) machine learning based 
methods such as survival trees, Bayesian methods, neural networks 
and random survival forests. Readers for more comprehensive re- 
view can refer to the recent review provided by Wang et al. (2017) . 
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Fig. 1. The pool-based active learning approach ( Settles, 2010 ). 

2.2. Introduction to active learning 
Active learning is a subfield of machine learning and statis- 

tical modeling. The goal of an active learner is the same as a 
passive learner but the key idea behind active learning is that a 
machine learning algorithm can lead to better performance with 
fewer training labels if it can select the data for learning. An ac- 
tive learner chooses queries, usually in the form of unlabeled data 
instances to be labeled by an oracle which can be a human anno- 
tator, human expert and prior knowledge. Active learning is very 
efficient in many data-driven applications, where there exist nu- 
merous unlabeled data but labels are rare, time-consuming, or ex- 
pensive to be labeled ( Settles, 2010 ). 

Since large amounts of unlabeled data is nowadays often avail- 
able and can be easily collected by automatic processes, active 
learning would be demanding in modern applications in order to 
reduce the cost of labeling. The active learning framework over- 
comes the challenge of insufficient labeled data by efficiently mod- 
eling the process of obtaining labels for unlabeled data. The advan- 
tage is that the active learner just requires to query the labels of 
a few, carefully selected instances during the iterative process in 
order to achieve more accurate learner ( Hsu, 2010 ). 

There exist several approaches/scenarios in which active learn- 
ers ask queries. The three main approaches widely used in the 
literature are ( Settles, 2010 ): (1) membership query synthesis 
( Angluin, 1988 ), (2) stream-based selective sampling ( Atlas, Cohn, 
& Ladner, 1990 ), and 3) pool-based sampling ( Lewis & Gale, 1994 ). 
For all approaches, there are also several different query strate- 
gies that have been developed to decide which unlabeled instances 
should be selected. Among above three approaches, pool-based 
sampling is most popular in many real-world applications. This ap- 
proach has been demonstrated in Fig. 1 : 

According to Fig. 1 , in pool-based sampling approach, a learner 
may start to be trained with a few number of labeled instances ( L ), 
then request labels for one or more carefully selected unlabeled in- 
stances ( U ) using an oracle. After labeling, the new instance is sim- 
ply added to the labeled set( L ), and the learner proceeds training 
process in a standard supervised way. This process continues up to 
a specified number of iterations or to achieve desired performance. 
2.3. Introduction to deep learning 

In a simple definition, deep learning or deep machine learning 
refers to use of a neural network with multiple layers of hidden 
nodes between input and output where the deep architectures are 
constructed by several levels of non-linear operations ( Fig. 2 ). 

Fig. 2. Multi layers neural network (deep network). 
According to Fig. 2 , deep network has the same architecture like 

as traditional neural network with higher number of hidden layers. 
The main difference between deep network and traditional neural 
network is the algorithms developed for training deep architecture 
which are faster and lead to stronger results ( Bengio, Courville, & 
Vincent, 2013 ). 

Deep Learning is including representation learning algorithms 
that transforms raw features to higher-level abstraction by using 
a deep network composed several hidden layers ( Bengio, 2009 ). 
In another word, deep learning applies computational approaches, 
which have multiple non-linear transformations to train data rep- 
resentation through several levels of abstraction ( LeCun et al., 
2015; Nezhad, Zhu, Sadati, & Yang, 2018 ). 

Deep learning applications include different areas. The most 
popular ones are speech detection, image recognition, automatic 
text generation and health informatics ( LeCun et al., 2015 ). In 
healthcare domain with explosive increase of large and high- 
dimensional datasets, deep learning with great performance out- 
performed some traditional methods in medical features repre- 
sentation and it showed strong potential for feature engineering 
and dimensionality reduction ( Mamoshina, Vieira, Putin, & Zha- 
voronkov, 2016 ). 

Readers for more detail about applications of deep learning in 
health informatics can refer to recent review papers provided by 
Miotto, Wang, Wang, Jiang, and Dudley (2017) ; Shickel, Tighe, Bi- 
horac, and Rashidi (2017) , and Ravi et al. (2017) . 
3. Related works 

Deep learning and active learning as two advanced machine 
learning methods have been applied in different areas but there 
exist a few research in the literature that use the benefit of deep 
learning or active learning in survival analysis. In this section we 
review studies in three different categories: (1) Methods proposed 
by using active learning for survival analysis, (2) Studies used deep 
learning to develop new survival analysis models and (3) Methods 
proposed based on deep learning and active learning but are not 
designed for survival analysis. 

In the first category, Vinzamuri, Li, and Reddy (2014) provided 
the first ever active learning framework for survival analysis (this 
study is the only work in this domain). Authors proposed a novel 
sampling strategy based on discriminative gradient for selecting 
the best candidate from the unlabeled pool set. Finally, they eval- 
uated their model performance using public EHRs datasets and 
compared it with some state of the art survival regression meth- 
ods. Although their approach demonstrated a good performance, 
it is only developed based on regularized Cox regression survival 
model which is limited to linear relationship assumption between 
covariates and survival time. In the other hand, the authors did 
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not evaluate the performance of their proposed model using high- 
dimensional data. 

In the deep learning domain (second category), there exist few 
studies which developed survival analysis framework using deep 
learning recently. Ranganath, Perotte, Elhadad, and Blei (2016) pro- 
posed a new survival model using deep learning termed deep sur- 
vival analysis. They used Deep Exponential Family (DEF) for cap- 
turing complex dependencies from clinical features including lab- 
oratory measurements, diagnosis, and medications codes. They ap- 
plied their model on a large EHR dataset related to coronary heart 
disease. In the other research ( Luck, Sylvain, Cardinal, Lodi, & Ben- 
gio, 2017 ), authors introduced a new deep learning approach which 
can directly predict the survival times for graft patients using foun- 
dations of multi-task learning. They demonstrated that their model 
outperforms usual survival analysis models such as cox propor- 
tional hazard model in terms of prediction quality and concor- 
dance index. 

Katzman et al. (2018) proposed a Cox Proportional Hazards 
deep multi-layer perceptron called DeepSurv to predict risk of 
event occurrence for patient and provided personalized treat- 
ment recommendations. They performed their approach on sim- 
ulated and real-world datasets for testing and evaluation. Finally, 
they used DeepSurv on real medical studies to illustrate how it 
can provide treatment recommendations. In the other research, 
( Lee, Zame, Yoon, & van der Schaar, 2018 ) introduced a different 
approach called DeepHit which employs deep architecture to es- 
timate the survival times distribution. They used neural network 
including two types of sub-networks: (1) a single shared sub- 
network and (2) family of cause-specific sub-networks. They eval- 
uated their method based on real and synthetic datasets which il- 
lustrate that DeepHit leads to better performance in comparison 
with state of the art methods. 

Although these survival models developed by using deep learn- 
ing are well suited for high-dimensional survival data, they are not 
the best choice when labeled instances are scarce, it seems more 
effort s should be accomplished to improve them in such situations. 
The other drawback of these deep learning based survival model 
is related to interpretability. Most of research discussed above did 
not provide interpretable framework for treatment recommenda- 
tion or survival risk analysis while their proposed method is based 
on deep representation of original features (risk factors) through 
multiple non-linear transformations. 

There are a few studies that develop deep active learning meth- 
ods for some machine learning tasks (third category). For exam- 
ple, Zhou, Chen, and Wang (2013) developed a semi-supervised 
learning framework termed active deep network (ADN) for sen- 
timent analysis. They used restricted Boltzmann machines (RBM) 
for feature learning based on labeled reviews and large amount 
of unlabeled reviews, then applied gradient-descent based super- 
vised learning for fine tuning and constructing semi-supervised 
framework. Finally they used active learning in their framework to 
improve model performance. In the other study, Liu, Zhang, and 
Eom (2017) proposed a deep active learning approach using Deep 
Belief Network (DBN) for classifying hyperspectral images in re- 
mote sensing application. All of these studies are appropriate for 
applying on high-dimensional data when labeled instances are rare 
(our focus in this research) but they are not developed for survival 
analysis. In other words, since there exist censored instances in 
the survival data, the deep active learning design should be dif- 
ferent and it is necessary to introduce new approach for survival 
data specifically. 

A summary of our review has been illustrated in Table 1 which 
indicates there exist no study to develop a survival analysis ap- 
proach using both deep learning and active learning. We address 
this gap in the literature to propose a deep active learning frame- 
work for survival analysis. 

4. Methodology 
The method developed in this research is an active learning 

based survival analysis using a novel sampling strategy. In our 
model, we apply deep learning for feature reduction and extrac- 
tion, when data is high-dimensional, complex and sparse. Since in 
survival analysis we deal with censored and uncensored instances, 
the active learning design should be different from the regular ap- 
proach. In our framework, we consider censored and uncensored 
instances in the training set as survival analysis needs both in- 
stances in the training process and we consider uncensored data 
as unlabeled instances in the pool set because their labels (time to 
event) are unknown. 

The general framework in our survival analysis approach in- 
cludes two main steps: (1) Deep feature learning for survival data 
and (2) Active learning based survival analysis. Since deep learning 
showed a great performance in the feature representation of med- 
ical data in different supervised and unsupervised machine learn- 
ing tasks, in the first step we do unsupervised learning using deep 
learning to represent features in higher level abstractions and ex- 
tract data into lower dimensions. Among different types of deep 
networks in the literature, four deep architectures are more pop- 
ular in the health domain ( Mamoshina et al., 2016 ) including: 1- 
Convolutional Neural Network (CNN), 2- Restricted Boltzmann Ma- 
chine (RBM), 3- Deep Belief Network (DBN) and 4- Stacked au- 
toencoder. The performance of each network would be various in 
the different applications and it is required to be trained carefully 
based on hyper-parameters tuning such as number of hidden lay- 
ers, hidden units and learning rate. Fig. 3 shows the first step of 
our approach: 

According to Fig. 3 , we represent both labeled (time to event) 
and unlabeled (censored) instances with together ( X train ⋃ 

X pool ) to 
obtain strong representation using pool of unlabeled data. In other 
words, our framework uses the advantages of abundant unlabeled 
data to provide less complex and more robust features (labeled and 
unlabeled) for survival analysis. 

In the second step, we apply our novel active learning based 
survival analysis on the represented/lower dimensions features ob- 
tained from the first step. This process is demonstrated in Fig. 4 . 

According to this Figure, we start by applying a survival analysis 
method such as Cox-based regression or Random survival forest on 
represented train set. In the next step we use our novel sampling 
strategy (explained in the next section) to rank the unlabeled data 
based on their informativeness level. Then we select the most in- 
formative candidate from the pool and add it to the train set and 
repeat the process until the stop criterion happens. The number 
of iterations in active learning process is usually based on a stop 
criterion which could be a fixed number of iterations or a conver- 
gence condition. For instance, the iteration process can be stopped 
when the performance improvement is under a specific threshold. 
4.1. Expected Performance Improvement (EPI) Sampling (Query) 
Strategy 

All active learning scenarios as well as pool-based active learn- 
ing use the informativeness measure for evaluation of unlabeled 
instances to select the best query (the most informative unlabeled 
instance). There exist several proposed approaches which formu- 
late such query strategies in the literature which can be cate- 
gorized in six general frameworks ( Settles, 2010 ): 1- uncertainty 
sampling, 2- query by committee, 3- expected model change, 4- 
expected error reduction, 5- variance reduction and 6- density 
weighted methods. 

In this research we developed a new sampling (query) strategy 
based on properties of survival analysis. In our strategy, we se- 
lect the unlabeled instance as the most informative instance (the 
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Table 1 
Summary of research works used deep learning or active learning in survival analysis. 

Authors Research DL AL SA 
Zhou et al. (2013) Proposed semi-supervised sentiment classification algorithm ! ! 
Vinzamuri et al. (2014) Developed survival regression for censored data for electronic health records ! ! 
Ranganath et al. (2016) Introduced a deep hierarchical generative approach for survival analysis in 

heart disease ! ! 
Nie, Zhang, Adeli, Liu, and Shen (2016) Proposed a survival analysis model applied on high-dimensional multi-modal 

brain images ! ! 
Liao and Ahn (2016) Proposed a survival analysis framework using a LSTM model ! ! 
Huang, Zhang, and Xiao (2017) Developed a survival model using CNN-based and one FCN-based sub-network 

and applied on pathological images and molecular profiles ! ! 
Chaudhary, Poirion, Lu, and 
Garmire (2017) Introduced a DL based, survival model on hepatocellular carcinoma patients 

using genomic data ! ! 
Liu et al. (2017) Proposed an active learning approach using DBN for classification of 

hyperspectral images ! ! 
Luck et al. (2017) Developed a patient-specific kidney graft survival model using principle of 

multi-task learning ! ! 
Sener and Savarese (2017) Developed an active learning framework using CNN for image processing 

applications ! ! 
Katzman et al. (2018) Proposed a Cox proportional hazards deep neural network for personalized 

treatment recommendations ! ! 
Lee et al. (2018) Developed a survival model using deep learning which trained based on a loss 

function that uses both risks factors and survival times ! ! 
Note: DL, AL and SA refer to deep learning, active learning and survival analysis. 

Fig. 3. Deep representation of survival data. 
best query) when it has the greatest performance change to the 
current survival model if we knew its label. Our sampling model 
use concordance index (C-index) to define the informative measure 
to query the unlabeled data. The survival model is trained again 
by adding a new instance ( X + ) from the pool to the training set: 
Train new = T rain ⋃ 

X + and the performance change is formulated 
based on the c-index difference as follows: 
#C X + = C new model − C current model (6) 

Similar to the other active learning sampling strategy, our goal 
is to select the most informative instance which could maximally 
improve the current model performance. This selection can be for- 
mulated as follows: 
X ∗ = argmax 

X + ∈ pool #C X + (7) 
Since in the real-world applications, we do not know the true 

label (time to event) of the instances in the pool, we should cal- 
culated the expected performance change over all possible time to 
events ( T s ) for each unlabeled records as follows: 
X ∗ = argmax 

X + ∈ pool 
∑ S 

s =1 h (T s | X + ) #C X + 
∑ S 

s =1 h (T s | X + ) (8) 
Our sampling strategy works for all survival analysis approaches 

such as cox-based models, parametric models and random survival 

forests. As an example for the cox regression, #C X + can be formu- 
lated as following equation and X ∗ is chosen based on Eq. (8) . 
#C X + = 1 

N 
[ 

∑ 
δi =1 

∑ 
T i <T j ( ˆ βs 

2 X i > ˆ βs 
2 X j ) − ∑ 

δi =1 
∑ 
T i <T j ( ˆ β1 X i > ˆ β1 X j ) 

] 
(9) 

Where ˆ β1 and ˆ β2 are the estimated cox model coefficients 
trained based on the current and new training set ( Train new ). N 
refers to the comparable (permissible) pairs in validation set for 
calculating c-index. 
4.2. Proposed Deep Active Survival Analysis (DASA) algorithm 

Algorithm 1 describes our Deep Active Survival Analysis ap- 
proach called DASA in detail. First, we need to set the train and 
pool data with considering that all instances in the pool should be 
censored (unknown time-to-event instances). Afterwards, in line 2, 
we apply deep feature learning on both train and pool sets. This 
step is an unsupervised learning process to build robust features 
with lower dimensions from original ones. Deep network should 
be trained based on hyper-parameters tuning (e.g., learning rate, 
batch size and hidden units). In this step we need to keep the 
weights of trained deep network for representation learning of 
new instances in testing process, it means each instance in the test 
set should be transformed in the lower dimensions based on these 
weights. After representation learning, we partition represented in- 
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Fig. 4. Active survival analysis approach. 
Algorithm 1 Deep Active Survival Analysis (DASA) algorithm. 
Require: Training set ( X T ), Pool set ( X P ), Survival status ( δ), 

Time to event ( T ), Deep architecture parameters (hidden 
layers, hidden units, …), Active learning maximum iter- 
ation ( max −iter) 

1: Round = 1 
2: Training deep network for feature reduction on ( X T ⋃ 

X P ) 
3: T rain set ← − X ′ T 
4: P ool set ← − X ′ P 
5: repeat 
6: Model = Deep −Surv i v al (X ′ T , δ, T ) 
7: for each record in the pool ( x ∈ X ′ P ) do 
8: Apply EPI sampling strategy and calculate the ex- 

pected performance improvement for each instance 
9: end for 

10: X ∗ = argmax 
x ∈ X ′ 

P 
∑ S 

s =1 h (T s | x ) #C x 
∑ S 

s =1 h (T s | x ) 
11: Labeling (time-to-event) of X ∗ by an Oracle based on 

original features 
12: X ′ P ← − X ′ P − { X ∗} 
13: X ′ T ← − X ′ T ⋃ { X ∗} 
14: δX ∗ ← − 1 
15: Round ← − Round + 1 
16: until Round ) = max −iter (OR reach to convergence condi- 

tion) 

stances into train ( X ′ T ) and pool set ( X ′ P ) corresponding to their in- 
dexes in the original train and pool sets (lines 3 and 4). These rep- 
resented sets are considered as the input of active survival model. 

In line 6, we start active learning process. First, we apply sur- 
vival analysis on deep represented features ( Deep −Surv i v al). This 
framework is flexible and all survival models can be used in this 
step. It is expected the performance of survival model is improved 
by using represented features (instead of original ones), this im- 
provement is termed as Deep Learning effect in this study. 

In line 7, we apply our sampling strategy. In each iteration, we 
calculate the expected performance ( #C x ) for all instances in the 
pool and select the best candidate based on our EPI sampling strat- 
egy described in the previous section ( Eqs. (6) –(8) ). Afterward, we 
label the best candidate using an oracle and remove it from the 

pool and insert it to the train set. Then we return to line 6 and 
apply the survival analysis model on new train set and then re- 
peat the process until reach to maximum number of iteration or 
a convergence condition (line 16). In each iteration of active learn- 
ing process, it is expected to improve the performance of survival 
model which is termed as Active Learning effect in this study. 
4.3. Treatment recommendations using proposed DASA approach 

In this section, we propose a simple yet effective approach 
to discover treatment patterns and treatment recommendations 
using DASA. Our method is highly useful when EHRs are high- 
dimensional and small size. Suppose X T = { X T 1 , X T 2 , . . . , X T n } is the 
treatment set and X A = { X A 1 , X A 2 , . . . , X A N } refers to all other person- 
alized features related to each patient where N > > n . Therefore, 
the input features is the union of these two sets ( X T ⋃ 

X A ). Since in 
the case of high-dimensional features, traditional approaches such 
as Cox proportional hazard or random survival forests cannot find 
the pattern of specific features (e.g., small treatment set), we first 
represent X A using deep learning to a lower dimension set ( X ′ A ) and 
then combine this represented set with the treatment set ( X T ) to 
build the new feature set ( X new = X ′ A ⋃ 

X T ). In the second phase, 
we apply our active learning framework to train an accurate sur- 
vival model based on new features and then find the pattern of 
treatment sets and interpret the results (e.g., comparison the coef- 
ficient of treatment options using Cox model or finding the impor- 
tance of different treatment plan using random survival forests). 

In our treatment recommendation approach, we transform 
many clinical features to a small feature set with higher level ab- 
straction and more robust features. While we represent patient 
information to lower dimension using deep learning we combine 
non-represented treatment options (as features of interest) with 
the represented set and then perform survival analysis using active 
learning framework. In the next section, we demonstrate how our 
approach discovers the treatment patterns better than traditional 
approaches. 
5. Experimental study: survival analysis for prostate cancer 
(SEER-Medicare data) 

In this section, we evaluate the performance of our approach 
(DASA) through experimental study. We use the Surveillance, 
Epidemiology and End Results (SEER)-Medicare linked database 
from SEER program of the National Cancer Institute (NCI). SEER- 
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Fig. 5. Kaplan–Meier plots for African–American and white patients. 
Medicare data is a powerful and unique source of epidemiological 
data on the occurrence and survival rates of cancer in the United 
States. In our study, we use prostate cancer SEER-Medicare data to 
evaluate our survival analysis approach and provide some insights 
by treatment recommendation. 
5.1. Datasets: SEER-Medicare prostate cancer data 

Prostate cancer is the most popular diagnosed invasive cancer 
among men, with approximately 56% of all prostate cancer patients 
diagnosed in men with age 65 years and older ( Siegel, Miller, & Je- 
mal, 2015 ). Fortunately, a wide range of men (nearly 90%) are diag- 
nosed with non-metastatic prostate cancer and 5-year relative sur- 
vival rate is very high for them. The death rate for prostate cancer 
is different among different populations. A good example of this 
racial disparity is the death rate for African-American men which 
is 2.5 times higher than white men. there exists a critical need to 
develop precision survival analysis for each cohort and discover the 
pattern of treatment. 
5.2. DASA Pperformance for SEER-Medicare prostate cancer data 

In this study, we consider the SEER-Medicare data into two 
racial groups: (1) African–American patients and (2) White pa- 
tients. Both groups are including many features (more than 300 
features) such as demographic data, socioeconomic variables, tu- 
mor information and assigned treatment. First, we employed some 
pre-processing methods to clean the data, for example we removed 
the features with more than 30% missing values and predict the 
amount of missing values for otherwise using Random Forest. Also, 
we applied Isolatin Forest ( Liu, Ting, & Zhou, 2008 ) for anomaly 
detection and outlier detection. After cleaning process, approxi- 
mately 10 0 0 and 50 0 0 patients remained for African-American and 
white patients respectively. For better understanding of this sur- 
vival data, we demonstrated the Kaplan–Meier curve ( Kaplan & 
Meier, 1958 ) for low grade (Gleason score = 6) and high grade 
(Gleason score ≥ 8) prostate cancer in Fig. 5 . Kaplan–Meier curve is 
the most popular plot for survival analysis which indicates the sur- 
vival probability at the specified survival time. As shown, generally, 
the survival probability for white patients is higher than African- 
Americans, and it is decreased in higher grade cancer based on 
specified survival time for both racial groups. 

In our study, the instances are patients diagnosed with prostate 
cancer and the labels are survival time to event of interest (pa- 
tient death). While this event has been already happened for some 

patients, there are many patients without known labels (censored 
instances in the pool). In our framework we estimate the labels of 
patients in the pool using an oracle and select the query which is 
the most informative instance in the pool. 

Since SEER-Medicare data is high-dimensional, sparse and com- 
plex, feature representation using deep learning can build more 
robust features when we use pool of unlabeled data (censored 
instances) in the representation process. In the other hand, our 
method using active learning has highly potential to improve the 
performance of survival models when we deal with small sample 
size (including time-to-event and censored instances). In this way, 
in experimental study, we consider small set for training of sur- 
vival model and show the performance of our approach in com- 
parison with baseline. 

For labeling of the censored instances (unlabeled data) in ac- 
tive learning framework, we use some scientific reports such as 
SEER cancer statistics review from National Cancer Institute (NCI) 
( Howlader et al., 2014 ) which acts as an oracle (prior knowledge) 
to estimate the time-to-event (label) of censored instances. One of 
these statistics is illustrated in Table 2 . Since we use prior knowl- 
edge to label the censored data, our sampling strategy selects the 
instances from the pool which could be labeled more accurately. 
Intuitively, since our approach uses the performance improvement 
(C-index improvement) in query selection, it selects the instances 
with more accurate relative risk in comparison to the instances 
with known labels. 

To evaluate the performance of our approach, we first employ 
CPH regression model (as a well-known survival analysis approach) 
and demonstrate how DASA can improve its performance based 
on different training sample size. For deep feature representation 
we used Stacked Autoencoder (SAE) with 5 hidden layers. Stacked 
autoencoder is deep architecture constructed by multiple autoen- 
coders. An autoencoder is a shallow network with one hidden layer 
where the number of unites are the same in the input and out- 
put layers. A stacked autoencoder can be trained based on greedy 
layer-wise approach ( Bengio, Lamblin, Popovici, & Larochelle, 2007 ) 
which means each autoencoder should be trained by encoding and 
decoding process one-by-one to minimize the reconstruction error 
in deep network. 

While stacked autoencoder with promised performance is 
an appropriate choice for deep representation of medical data 
( Mamoshina et al., 2016 ), our method is flexible and can use any 
other deep architectures for survival feature learning. 
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Table 2 
5-Year SEER conditional relative prostate cancer survival and 95% confidence intervals. 

Stage at diagnosis Survival time since diagnosis Percent surviving next 5 years 
Percent Confidence interval 

Local 0-year 100% (100, 100) 
1-year 100% (100, 100) 
3-year 100% (100, 100) 

Regional 0-year 100% (100,100) 
1-year 99.3% (98.9, 99.5) 
3-year 98.9% (98.4, 99.2) 

Distant 0-year 29.2% (28.4, 29.9) 
1-year 34.1% (33.1, 35.1) 
3-year 45.6% (43.9, 47.2) 

Unstaged 0-year 76.6% (75.6, 77.5) 
1-year 81.1% (79.8, 82.1) 
3-year 82.8% (81.4, 84.1) 

Fig. 6. Performance of proposed approach in comparison with baseline (training size = 25). 
Fig. 6 shows the average performance of our approach for 20 

iterations in comparison with baseline on the test data. We 
randomly selected 50 instances from African-American patients 
dataset and considered 25 instances as train set and 25 instances 
as test set, then implemented our approach in 20 iterations. For 
more robust results, we proceeded this process over 10 runs and 
calculated the average performance in each iteration. We chose 
20 iterations in active learning process since according to our im- 
plementations the amount of performance improvement is not re- 
markable after 20 iterations. 

As demonstrated in Fig. 6 , our method (DASA-COX) improves 
the performance of Basic-COX significantly in terms of concordance 
index. This improvement is caused by two effects: (1) Deep learn- 
ing effect which improves the model performance by features rep- 
resentation using labeled and unlabeled instances, and (2) Active 
learning effect which increases the model performance by involv- 
ing the best labeled censored instance from the pool set in training 
process across all iterations. 

According to our results, the choice of deep architecture plays a 
significant role in the amount of deep learning effect. In this way, 
we considered several SAE architectures with different parameters 
and then applied parameter tuning for major parameters such as 
learning rate, number of unites in the hidden layers, activation 

functions and batch size to select the best parameters in the SAE 
network. Finally, we selected the best one with 150, 100 and 5 hid- 
den units in the encoders, decoders and latent layers. Since in au- 
toencoders the middle layer provides the highest representation of 
the input ( Bengio et al., 2007 ), we used the transformed features 
in the middle layer as the input of survival analysis model. 

Fig. 7 shows our approach performance for training size of 50 
and 100 instances (we followed the same procedure as previous). 
Top panel belongs to African–American patients and bottom panel 
is related to white patients. It is clear DASA-COX outperforms base- 
line approach in all cases. The effect of deep learning in improving 
model performance is higher at the bottom panel which is caused 
by larger amount of pool set related to white patients that pro- 
vides better feature learning. As mentioned before, our approach 
is flexible enough and can employ any survival analysis model in 
its framework to improve the baseline. Hence, we perform Random 
Survival Forests (RFS) model as a well-known non-linear survival 
model along with CPH model and evaluate our approach across 
different training sizes. The results are shown in Tables 3 and 4 
for African-Americans and white patients respectively. 

The results confirm that our method can improve the concor- 
dance index significantly for Cox proportional hazard model and 
random survival forests across all training sizes in each dataset. 
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Fig. 7. Performance of proposed approach in comparison with baseline for different training size. 
Table 3 
Performance comparison (C-index) between DASA and baseline 
models (African-Americans). 

Training size CPH DASA-CPH RSF DASA-RSF 
25 instances 55.2% 84.7% 16.3% 57.6% 
50 instances 54.2% 74.9% 17.6% 54.5% 
100 instances 59.1% 76.6% 21.4% 48.2% 
200 instances 58.6% 72.6% 22.3% 47.9% 

Table 4 
Performance comparison (C-index) between DASA and baseline 
models (Whites). 

Training Size CPH DASA-CPH RSF DASA-RSF 
25 instances 52.4% 87.9% 13.3% 62.1% 
50 instances 51.2% 84.4% 15.5% 58.3% 
100 instances 50.8% 82.3% 15.7% 49.7% 
200 instances 53.6% 77.1% 18.2% 46.4% 

According to above results, the largest performance improvement 
for both methods (CPH and RSF) is achieved in the 25 instances 
training size (the smallest one) caused by active learning effect. In 
fact, we can conclude that DASA leads to larger performance im- 

provement in smaller training size where the active learning ef- 
fect is dominant. Active learning achieves larger improvement in 
the smaller dataset ( Settles, 2010 ) where the performance of base- 
line model is lower, therefore it can make larger impact (difference 
from baseline) in few iterations. 
5.3. Evaluation of EPI sampling strategy 

To evaluate our novel sampling (Expected Performance Im- 
provement) strategy, we consider two popular sampling strategies 
for active learning ( Settles, 2010 ): (1) Random sampling, where the 
queries are randomly selected from the pool and (2) Uncertainty 
sampling strategy, in this case an active learner selects the queries 
of instances which are least certain how to label. We applied each 
sampling strategies (EPI, Random and Uncertainty) in DASA frame- 
work using CPH. The results indicate that our EPI sampling strategy 
outperforms the other ones in both datasets ( Tables 5 and 6 ). 
5.4. Treatment recommendation by DASA 

In the second step, we demonstrate how our treatment rec- 
ommendation approach works. we considered three well-known 
treatment options for prostate cancer: chemotherapy, radiotherapy 
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Table 5 
Performance comparison of different sampling strate- 
gies (African–Americans). 

Training size EPI Random Uncertainty 
25 instances 84.7% 65.4% 77.1% 
50 instances 74.9% 62.6% 70.4% 
100 instances 76.6% 58.6% 71.9% 
200 instances 72.6% 61.4% 69.3% 

Table 6 
Performance comparison of different sampling strate- 
gies (Whites). 

Training size EPI Random Uncertainty 
25 instances 87.9% 67.5% 82.8% 
50 instances 84.4% 63.3% 78.3% 
100 instances 82.3% 64.2% 77.6% 
200 instances 77.1% 60.8% 65.6% 

Table 7 
Average hazard ratio among different treatment plans. 

Method Chemotherapy Radiotherapy Surgery 
African–Americans COX-Base 1 1 1 

COX-DASA 0.74 1.04 1.38 
White patients COX-Base 1 1 1 

COX-DASA 0.96 1.08 2.23 
and surgery as three binary variables in our dataset. Our goal is 
to discover the importance of each therapy using DASA approach 
for each subgroup of patients (African–Americans and white pa- 
tients). Since in the experimental study CPH illustrated a great 
performance, we performed survival analysis using CPH. We do 
feature representation by deep stacked autoencoder network with 
150, 100 and 5 hidden unites in encoder, decoder and latent lay- 
ers respectively. Without loss of generality, we used small sample 
size with 50 instances in the training process (this number of in- 
stances could be various and this is just an example to show how 
our recommendation approach works). Before training process, we 
combined chemotherapy, radiotherapy and surgery variables (fea- 
tures of interest) to the represented features in both training and 
pool datasets. The represented features are the results of deep fea- 
ture learning performed on other features (high-dimensional fea- 
tures in training and pool sets). In our case, we combined the 5 
represented features obtained from the latent layer of SAE network 
with the three features of interest. Afterward, we trained the cox 
survival model using active learning framework with 20 iterations 
over all new features (totally 8 features). The results for average of 
exponential of coefficients (hazard ratios) over 10 runs shown in 
Table 7 for African-Americans and white patients: 

As shown above, traditional CPH model could not differentiate 
between treatment plans where their hazard ratios are one. Since 
the data is high-dimensional traditional CPH leads to zero coeffi- 
cients for these three treatment variables. On the other side, our 
approach using Cox model can discover the risk associated to each 
treatment. Based on our results, surgery has the highest risk in the 
both subgroup of patients, radiotherapy is associate with a decline 
in the survival rate while chemotherapy increases the survival rate 
with lowest risk. It is obvious that the pattern of hazard ratios 
among treatment plans are different between African-American 
and white patients. For example the risk related to surgery is sig- 
nificantly higher than the other two therapies in white patients 
(more than 2 times) while in the African-Americans the pattern 
is different. 

For more evaluation of our treatment recommendation ap- 
proach, we considered two groups of patients: (1) patients with 
low cancer grade (Gleason score equal to 6) and (2) patients with 

Table 8 
Average hazard ratio among different treatment plans. 

Cancer type Chemotherapy Radiotherapy Surgery 
African–Americans Low grade 0.75 0.59 0.88 

High grade 0.53 0.96 1.27 
White patients Low grade 1.86 0.65 1.13 

High grade 0.55 1.64 2.63 
high cancer grade (Gleason score is higher than 7), the results 
of risk associated with different treatment options (obtained from 
COX-DASA) are shown as following: 

According to the Table 8 , the risk (hazard ratio) of treatment 
options are different based on the grade of cancer in each racial 
group. For example treatment with surgery in the high grade 
prostate cancer is more risky rather than low grade cancer which 
is confirmed in the literature as well ( Carter, 2011; Erickson et al., 
2018; Lei et al., 2015 ). Based on this results, among all groups, the 
risk of surgery for white patients with high grade cancer is very 
large in comparison with the other two treatment options. 

This experimental treatment recommendation was a simple ex- 
ample to show how our method works. This approach is highly 
useful for comparing the risk associated with new treatment in 
comparison with current treatment plans where the labeled data 
is rare and expensive. 
6. Discussion and conclusion 

In this research, we proposed a novel survival analysis frame- 
work using deep learning and active learning called Deep Active 
Survival Analysis (DASA). The motivation for this study comes from 
either literature gap and application needs in several domains (e.g., 
healthcare, manufacturing and finance) where the labeled data is 
scarce and high-dimensional. 

Our approach is able to improve the survival analysis per- 
formance significantly and provides treatment recommendations. 
DASA encompasses two main phases: (1) deep feature learning 
and (2) active learning process. We do feature representation using 
deep learning to produce robust features from high-dimensional, 
sparse and complex EHRs. We used the advantage of pool of unla- 
beled data (censored instances) to provide better representation of 
labeled instances from deep learning implementation. In the active 
learning process, we developed a new sampling strategy specifi- 
cally for survival analysis which can be used for any survival anal- 
ysis models such as Cox-based approaches and random survival 
forests. 

In the experimental study, we used SEER-Medicare data related 
to prostate cancer among African-Americans and white patients to 
demonstrate how our model can enhance the performance of sur- 
vival analysis in comparison of traditional approach. Empirically we 
showed that deep learning has greater effect on survival perfor- 
mance improvement in the case that we have larger pool of unla- 
beled data (because of stronger unsupervised feature learning) and 
active learning effect is higher when we deal with smaller training 
sample size (because learning from smaller data is hard and active 
learning can help more). We applied our treatment recommen- 
dation approach to find hazard ratio of three common treatment 
plan (chemotherapy, radiotherapy and surgery) for prostate cancer 
based on Cox model. While traditional CPH model fails to find the 
hazard ratios among high dimensional data, our approach discov- 
ers them and provides some racial treatment insights, for example, 
surgery is associate with higher risk in white patients especially in 
the case of high grade prostate cancer. We also evaluated our new 
sampling strategy (EPI) by comparing with two popular sampling 
strategies in active learning literature. The results showed that our 
strategy outperforms the others. 
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In sum, our method leads to more accurate survival analysis 

for risk prediction, survival time estimation and treatment recom- 
mendation. Our approach is flexible enough to capture any sur- 
vival analysis model and improves its performance. Our model can 
be applied on different areas especially in the case of testing and 
comparing the risk (impact) of new treatment (e.g., in healthcare) 
or new technology (e.g., in the manufacturing process). In this way, 
the most important challenge is providing a reliable oracle in ac- 
tive learning process because in this case the prior knowledge is 
limited and taking the advantages of experts is expensive and time 
consuming. 

There are some limitations to the proposed framework, the 
quality of the results are limited by the cases where data is high 
dimensional and labeled instances are small. Although we used the 
rich SEER-Medicare prostate cancer data to evaluate our approach, 
more experimental studies are needed to acknowledge the perfor- 
mance of the proposed approach. For evaluation of our treatment 
recommendation method, we only considered three recommenda- 
tion options while it could be extended for the multiple choices of 
therapies. Although DASA achieved good results, the current per- 
formance might be improved by applying more deep architectures 
for feature learning, developing better sampling strategies and pro- 
viding more reliable oracle in active learning process. 

For the future works, DASA can be applied on the other datasets 
and applications including real-world cases in the healthcare, man- 
ufacturing and finance to provide more evaluations and insights. 
The sampling strategy proposed in this study is based on the per- 
formance improvement which can be enhanced in the other direc- 
tions. As the choice of deep representation plays a significant role 
in the success of machine learning tasks ( Bengio et al., 2007 ), it is 
a great opportunity to investigate and compare the performance of 
the other deep architectures such as Deep Belief Network and Vari- 
ational Autoencoders in DASA framework. Last but not least, since 
the proposed approach uses deep learning and active learning as 
an integrated framework, it is essential to evaluate its computa- 
tional performance when we deal with big unlabeled data in the 
pool and develop appropriate strategies if needed. 
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