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Abstract

The increasing availability of electronic health record data offers unprecedented opportunities for predictive modeling
in healthcare informatics including outcomes such as mortality and disease diagnosis as well as risk factor identifica-
tion. Recently, deep neural networks (DNNs) have been successfully applied in healthcare informatics and achieved
state-of-art predictive performance. However, existing DNN models either rely on the pre-defined patient subgroups
or take the “one-size-fits-all” approach and are built without considering patient stratification. Consequently, those
models are not able to discover patient subgroups and the risk factors are thereafter identified for the entire patient
population, failing to account for potential group differences. To address this challenge, we propose the use of deep
mixture neural networks (DMNN), a unified DNN model for simultaneous patient stratification and predictive mod-
eling. Experimental results on a clinic dataset show that our proposed DMNN can achieve good performance on
predicting diagnosis of acute heart failure. With DMNN’s ability to incorporate patient stratification, we are able to
systematically identify group-specific risk factors for different patient subgroups which could potentially shed light on
revealing factors that contribute to outcome differences.

1 Introduction

With the surge in volume and availability of electronic health record (EHR) in recent years, predictive modeling in
healthcare informatics offers enormous opportunities for accurate prediction of adverse clinical outcomes1. Unlike
the conventional structured data, EHR usually consists of heterogeneous data elements such as continuous features
(labs, vital signs et.al), categorical features (sex, ethnicity, diagnosis et.al) and missing values. Hence, predictive
models should be able to handle such complex data. Due to the intrinsic complex biological mechanism of clinical
outcomes, predictive models should be capable of capturing the high-level information among those different data
elements. Moreover, as patient subgroups exhibit differential health outcomes that are potentially associated with
different risk factors, a successful model would ideally take these aspects into consideration for patient stratification.
The net effect of this could provide finer risk factor identification for patient subgroups (in contrast to the entire patient
population) and promote the understanding of health disparities. With the aforementioned considerations, building
effective predictive models is a challenging problem in healthcare informatics.

Recently, deep neural networks (DNNs) have achieved remarkable success in computer vision and natural language
processing2, 3. Compared with traditional machine learning models, DNNs can learn high-level feature representations
via layer-by-layer nonlinear transformations from structured or unstructured data without feature engineering. With
the merit of automatic high-level feature learning, DNNs have been widely applied in healthcare informatics and
achieved state-of-art predictive performance in various tasks such as ICU outcome predictions, diagnosis, phenotype
discovery and disease progression monitoring4–8.

Although DNNs are successful in healthcare informatics, previous works do not specifically take into considerations
the discovery of patient stratification. Whereas multi-task learning approaches9 are effective, they often rely on the
pre-defined patient subgroups. As shown in the motivating example (see below), there may exist patient subgroups
and each subgroup is associated with some specific risk factors. Existing “one-size-fits-all” approach in this case is not
desirable even though DNNs can still be able to achieve good performances with a large amount of training data. When
interpreting the trained models, the identified risk factors are associated with the entire patient population rather than
each individual subgroup. With the lack of granularity in patient subgroups, the associated risk factors are identified
for the entire population and do not account for the patient heterogeneity.

While patient stratification relies heavily on the medical domain knowledge, some traditional machine learning models
are capable of discovering patient subgroups. For example, unsupervised learning (e.g clustering)10, 11 can group sim-



ilar patients into clusters; in the study of treatment effect, tree methods12–15 also group patients that are homogeneous
in tree splitting criterion. However, those two methods do not aim at predictive modeling and hence are not applicable
in our problem. For supervised learning, linear model based method (such as mixture of Gaussian regression16 and
supervised biclustering17) can inherently group patients that follow the same input-outcome relations. However as
basing on linear models, they are not capable of capturing high-level information from EHR data.

Motivation example of patient subgroups For a motivating example on the possible patient subgroups with their
associated risk factors, we performed a preliminary experiment for predicting in-hospital mortality using the MIMIC
III dataset18. As blood pressure level is a risk indicator for many diseases19, we stratify patients into 3 subgroups
based on the systolic blood pressure (SBP) measured in the first hour after ICU admission (Group 1: SBP≤90, Group
2: 90<SBP<120, Group 3: SBP≥120). We use labs from the lab chart in MIMIC III and demographics as the input
features. We deployed gradient boosting machine (GBM)20 as the predictive model and evaluated GBM performance
with 75%/25% train-test split. After model training where model parameters are selected by cross-validation on
training data), we identified the most important risk factors using feature importance given by GBM. Figure 1 reports
the results with predictive AUC on testing data. We see from the figure that for the entire patient population (Figure
1(a)), the important risk factors have an “averaging” effect from other three patient subgroups, and patient subgroups
exhibit rather different risk factor patterns. For example, lactate is the most important feature in low SBP group
(Figure 1(b)) while not important for high SBP group (Figure 1(d)). On the contrary, sodium is the most important
risk factors for high SBP group yet not important for normal (Figure 1(c)) and low SBP groups. Those observations
imply disparities in patient health conditions and identification of the associated risk factors could potentially enable
more effective interventions and treatments.

In this paper, in response to the aforementioned challenges, we introduce a unified DNN model, termed as deep mixture
of neural networks (DMNN), that simultaneously predicts clinical outcomes and discover patient subgroups. DMNN
consists of an embedding network with gating (ENG) and several local predictive networks (LPNs). ENG embeds raw
input features into high-level feature representation which is further used as input for LPNs. Unlike the existing DNN
models without subgroup identification, patients will be grouped that share similar functional relations between inputs
and clinical outcomes via the gating mechanism in ENG, and each functional relation is modeled by one LPN. The
subgroup discoveries enable us to apply existing interpretation techniques to identify subgroup-specific risk factors. By
explaining the local input-outcome relations captured by LPN within each patient subgroup, the subgroup-specific sets
of risk factors can provide information to account for health disparities. To demonstrate the effectiveness of DMNN,
we conduct extensive experiments on a clinic dataset for predicting the diagnosis of acute heart failure. DMNN can
achieve state-of-art predictive performance when comparing with other baseline machine learning models. We apply
mimic learning technique8 for interpretation on DMNN and show that DMNN can provide informative risk factors for
clinical decision making.

2 Related Work

Deep Predictive Model Applications of deep learning models have been flourishing due to the increasing availability
of EHR data. Tang et.al21 and Purushotham et.al4 benchmark the performance of DNNs with comparison to other
machine learning models on MIMIC III data. Che et.al8 proposed DNN model that incorporates prior knowledge of
medical ontologies as regularization for predicting ICU outcomes. Choi et.al6 proposed a recurrent neural network
with GRU for predictions of heart failure onset. Li et.al5 and Suo et.al7 develop multi-task DNN models for predict-
ing disease progression and diagnosis where multiple targets are used as an approach of regularization. Another line
of predictive modeling with deep learning is to utilize the power of deep unsupervised learning to learn high-level
feature representations in the latent vector space. DNN feature learning significantly reduces the workload of feature
engineering especially for complex data like EHR and can be used in the downstream predictive tasks. For example,
Miotto et.al22 and Lasko et.al23 learn patient representations from EHR, and Choi et.al24 embeds diagnosis codes and
procedure codes into vector space. The learned representations are then used to predict patient health outcomes. How-
ever, those methods don’t specifically consider the heterogeneity in patients and consequently, model interpretations
are for the entire patient population, lacking granularity to account for subgroup differences.

Patient Subgroup Discovery Subgroup identification is one of the most important tasks in medical science and has
been studied in various settings. For example, Seymour et.al10 and Lu et.al25 use unsupervised clustering techniques to



(a) Entire Cohort, AUC=0.82 (b) Group 1, AUC=0.81

(c) Group 2, AUC=0.85 (d) Group 3, AUC=0.76

Figure 1: Top 10 risk factors for different patient groups. AUC is reported on testing data. Different patient subgroups
exhibit rather different sets of risk factors.

group patients by sepsis and cancer subtypes respectively. In the study of treatment efficacy, subgroups are identified
as the patients that have similar treatment responses. In this context, tree methods12–15 are developed that patients
are grouped in the leaf node that are homogeneous treatment effect. For predictive modeling that is studied in this
paper, finite mixture of (Gaussian and logistic) regression (FMR)16, 26, 27 and mixture of experts (ME)28, 29 were used
to identify patient subgroups. However, FMR and ME models are based on the conventional machine models which is
less capable of extracting high-level information compared with DNNs. Also, they usually require clean and structured
data to train and are not capable of handling complex EHR data (e.g multi-modal and sequential data). To address
those challenges in FMR and ME, our proposed DMNN builds a unified DNN architecture that not only exploits the
predictive power of DNNs but also be able to discover patient subgroups.

3 Method

In this section, we present the proposed method. We start with the introduction of feed-forward neural network as
a general-purpose DNN for predictive modeling. From the perspective of feature learning, FNN can be viewed as
the embedding network that learns high-level feature representations (e.g the penultimate layer). We then describe in
detail the structure of our DMNN model.

Notations: We use (x, y) to represent a sample in the data, where x is the input feature vector and y be the label.

3.1 Deep neural network models

Feed-forward neural network (FNN) FNNs are fully connected neural networks with multiple layers (input, hidden
and output layers) equipped with nonlinear activations. Through hidden layers, FNNs transform the input features
and capture high-level information among them; the hidden vector in the penultimate layer is then viewed the learned
feature representations based on which the output layer makes predictions, as shown in Figure 2(a). Mathematically,
the learning procedure of a FNN of k hidden layers is given as follows (x(0) = x):

h(i+1) = σ(W (i)x(i) + b(i)), i = 0, · · · , k − 1

ŷ = f(W (k)h(k) + b(k))
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Figure 2: Deep neural network models FNN and denoise autoencoder based on FNN.

where W (i) and b(i) are the weight matrix and bias term respectively of compatible dimensions, h(i) is the hidden
state vector and σ is the non-linear activation function such as sigmoid, tanh or ReLU, ŷ is the prediction and f(·) is the
prediction function according to the tasks (e.g softmax or sigmoid for classification, identity function for regression).

An special application of FNN is the denoise autoencoder (DAE) for unsupervised feature learning, where the output
of FNN is the reconstruction of the input. In DAE, the input is corrupted by a noise and then fed into the autoencoder.
Figure 2(b) shows an example of 5-layer DAE. The learned feature representation is the bottleneck hidden layer. The
idea behind DAE is that high-level feature representations that effectively capture the information in raw input features
should be able to well reconstruct the raw features with robustness to noise. In the proposed DMNN model (see below),
we use DAE to initialize our DMNN embedding network with gating to help training process.

3.2 Deep mixture of neural networks (DMNN)

DMNN Structure Although existing DNN models achieve state-of-art predictive performance, they don’t explicitly
take into considerations the heterogeneity in patient health conditions (e.g subgroup structure), which could potentially
hamper the model interpretation. However, determining patient subgroups usually require domain knowledge in the
medical science which may not always be available for complex data. Hence, the goal of DMNN is not only to achieve
comparable or better predictive performance but also enable the discovery of patient subgroups. In DMNN, the patient
subgroups are defined that share the same functional input-output relations.

One challenge remaining in the partition of patient subgroups is determining which subgroup each patient belongs
to. As such membership indicators can be viewed as latent variables in the modeling process, inspired by the classic
mixture of experts and the recent deep unsupervised model, we use a DNN to learn feature representations from
the input and then predict the membership indicator using softmax (e.g gating) based on the feature representations
(termed as embedding network with gating, ENG). The learned features are then fed into multiple FNNs for prediction.
However, the importance of those FNNs is gated by the membership indicator in the final loss function (termed as
local predictive network, LPN). As such, patients with similar gating patterns are grouped and the FNN can capture
the “local” input-outcome functional relation. Figure 3 displays an overview of DMNN structure.

Mathematically, for each training example (x, y), ENG in DMNN outputs the feature representation h and a vector of
gating values g:

h, g = ENG(x).

The each local predictive network LPNi makes prediction ŷi and we obtain its respect loss function Li:

ŷi = LPNi(h)

Li(x) = f(ŷi, y), i = 1, · · · ,K

where f is the loss function: squared error f(ŷ, y) = (ŷ− y)2 for regression and cross-entropy f(ŷ, y) = −(y log ŷ+
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Figure 3: Overview of DMNN with ENG and and K LPNs.

(1− y) log ŷ)) for classification.

The final loss function for training example x is the sum of loss functions of all K LPNs, weighted by the gating value
g = (g1, · · · , gk):

Lfinal(x) =
K∑
i=1

giLi(x). (1)

By minimizing the final loss, model parameters are learned when the loss function converges to a (local) minimum.
Note that K is treated as hyperparameter and the optimal K is selected via cross-validation or validation data.

Subgroup identification in DMNN In DMNN framework, subgroups will be identified as the set of patients that share
the similar functional input-output relation. In other words, clinical outcomes for patients within the same subgroup
should be predicted well by some LPN. Intuitively, this implies that we can group patient according to the gating
values g: patient x belongs to subgroup k where k = argmaxk{gi : i = 1, · · · , gK}, as a better LPN should have a
larger gating value. Indeed, we can perform analysis similar to mixture of experts on the final loss function to see the
rationale behind DMNN’s subgroup identification.

From the final loss function Eq. (1), we see that each LPN is encouraged to fit each training sample well, e.g., low
error value (though weighted differently). If one LPN captures the input-outcome relation well and gives less error
than other LPNs, ENG in DMNN is encouraged to produce larger gating value for that specific LPN (simultaneously
reduce other gating values due to the softmax function). Moreover, this will make the ENG embed similar patients
closer to each other in the late feature space. Consequently, those patients will exhibit similar gating values. With the
clustering effect of ENG, DMNN is capable of discovering patient subgroups.

3.3 Model interpretation by knowledge distillation

Model interpretability is as important as accuracy in clinical research. While deep learning models are generally
difficult to interpret, recent progress in knowledge distillation30, 31 for DNNs enables us to understand what DNNs
learn from the data. The main idea is that after an accurate but complex DNN (teacher model) is trained, the knowl-
edge can be transferred to train another simpler model (student model) by predicting the soft labels predicted by the
teacher. Training with soft labels is an implicit regularization for the student model with which it can achieve as good
performance as the teacher model31, 32. If the student model that learns knowledge from the teacher DNN model is
interpretable, we can then interpret the DNN through the student model. For our DMNN model, we take the approach
developed in Che et.al32 for interpretation. We first train DMNN as the teacher model and then train the interpretable
gradient boosting machine for regression (GBR) as the student model to mimic DMNN’s predictive behavior. GBR
uses the probability generated by DMNN as target. For each subgroup identified by DMNN, we train GBR and use
the feature importance in GBR to identify important risk factors for that subgroup.



Table 1: Feature statistics (mean and standard deviations for continuous features, percentage for categorical features.).
In the table, AA represents African Americans, F female and P positive.

Demo Stats Vitals Stats Labs Stats Hemodynamics Stats

Age 59.15 Initial SBP 153.27 Troponin (P) 162 DBP 75.87
(12.51) (33.06) (48.4%) (17.51)

Race (AA) 297 Initial DBP 91.23 NP 3663.42 SBP 127.86
(88.7%) (20.73) (6388.41) (29.572)

Gender (F) 174 Initial HR 91.56 Sodium 138.81 MAP 94.98
(51.8%) (18.71) (4.15) (21.01)

Weight 99 RR 20.66 BUN 27.00 dP/dt 602 .90
(30.92) (4.75) (20.46) (258.89)

Height 172.85 OS 96.30 Creatinine 2.04 SVR 1615.43
(28.37) (4.55) (2.47) (752.03)

Temperature 97.95 eGFR 60.48 SV 66.05
(0.67) (31.20) (26.78)

Hemaglobin 11.78 HR 85.74
(2.35) (15.01)

CO 5.55
(2.16)

Figure 4: Box plot for AHF v.s non-AHF. It can be observed that AHF and non-AHF patients share some similar fea-
ture characteristics in hemodynamic features, yet AHF group exhibits larger variance. This implies large heterogeneity
in patient health conditions for AHF onset.

4 Results and Discussions

In this section, we apply DMNN on a clinical dataset collected from patients presenting signs and symptoms of acute
heart failure (AHF) in the emergency department (ED) of three urban academic medical centers in Detroit. The task
is to predict whether a patient ultimately will be assigned a diagnosis of AHF. Our goal is two-fold: (1) accurately
predict the risk of AHF, so that further actions can be effectively taken to avoid adverse outcomes; (2) identify the
associated risk factors within the patient subgroups to promote the understanding of health disparities.

Data information and preprocessing The data contain health records for 335 patients with suspected AHF, among
which 78% (261/335) of patients actually have AHF onset. There are 26 features in the data, including 5 demographics
(age, race, gender, weight and height), 6 vital signs (initial SBP, initial DBP, initial heart rate (HR), respiratory rate
(RR), oxygen saturation (OS) and temperature) when presenting in ED, 7 initial lab results (troponin, natriuretic
peptide (NP), sodium, BUN, creatinine, eGFR and Hemaglobin), and 8 hemodynamic features measured using a non-
invasive device (SBP, DBP, MAP, dP/dt, SVR, SV, HR and CO). Table 1 shows the details of feature characteristics.
Figure 4 is the boxplot of hemodynamic features for comparing AHF against non-AHF patients. From the figure,
we can see that while non-AHF and AHF patients share some similar statistics (such as median value, 25th and 75th
quantiles), AHF patients show larger variance in hemodynamic features compared with non-AHF patients . This
observation implies the existence of large heterogeneity in health conditions among patients in the ED who present



Table 2: Average AUC and AUPRC on testing data along with standard deviations.

LR GBM DT KNN FNN RF DMNN

AUC 0.69 0.70 0.58 0.66 0.69 0.71 0.74
(0.09) 0.07) (0.08) (0.04) (0.05) (0.06) (0.07)

AUPRC 0.88 0.90 0.81 0.85 0.89 0.90 0.92
(0.05) (0.03) (0.03) (0.04) (0.02) (0.01) (0.03)

with suspected AHF.

For missing values in the dataset (missingness is about 0.6%), we impute them with mean values for continuous
features and the majority value for categorical features. Note that the imputation in our experiments is based on
training data to prevent possible information leak to testing data (after train/test split). As features have different
scales, we also perform data normalization for features to have zero mean and unit variance.

Implementation and evaluation details We implement DMNN using Pytorch. In the experiment, DMNN is of depth
4, consisting of the input layer, two hidden layers of size 40 and 20 respectively which act as the ENG part in DMNN
and multiple output layers; the embedding of the 2nd hidden layer will be fed into the softmax layer to obtain gating
values and LPNs for predictions which are linear models. Sigmoid function is used in hidden layers for non-linear
activation. By initial experiments on the number K of LPNs, we found K = 2 work well with this relatively small
dataset. Since deep neural network can be easily overfitted and the gating mechanism may degenerate (i.e model
may only use one LPN), we apply unsupervised learning techniques to initialize the ENG in DMNN. We first train a
5-layer (dimension 26-40-20-40-26) denoise autoencoder (DAE) and use the encoder to initialize embedding part of
ENG; after DAE is trained, we extract the bottleneck feature representations and use K-means for clustering; we then
train the ENG to predict the cluster labels. With ENG initialized, DMNN is trained via stochastic gradient descent in
conjunction with L2 regularization.

We test different machine learning models for performance evaluation. Those baseline models include logistic regres-
sion (LR), decision trees (DT), K-nearest neighbor (KNN), gradient boosting machine (GBM), feedforward neural
network(FNN) of the same hidden dimensions, random forest (RF). We use Python scikit-learn package for model
implementation. In the experiment, training data are divided into training/testing by a split 85%/15%. Within the
training data, we further split out 10% as validation data for selecting model parameters. The evaluation metrics are
the area under receiver operating characteristic curve (AUROC) and area under precision-recall curve (AUPRC). We
repeat the train/test procedure 5 times and the average predictive performance on the testing data is reported.

Predictive performance Table 2 shows the predictive performance on the testing data. We see from the table that
DMNN performs better than other baseline models. As shown in Figure 5, patients can be clustered into two sub-
groups. In contrast with baselines that only build a global predictive model for all patients, DMNN builds a local
predictive model for each patient subgroup that is able to capture the local functional input-output relations, resulting
in performance gain. We also observe that all models achieve good performance in terms of AUPRC and relatively
worse performance for AUC. This is due to that the majority of the patients (78%) have AHF onset, and all models
can predict AHF well at the cost of misclassifying non-AHF patients as AHF. From Figure 5, we see that there is a
large overlap between AHF and non-AHF patients; from Figure 4, non-AHF and AHF patients have similar charac-
teristics for hemodynamic features. Those two observations imply that patients in ED with possible AHF are similar,
yet those with the highest likelihood of diagnosis are rather different. This heterogeneity makes it difficult for models
to differentiate AHF and non-AHF patients effectively, leading to a lower AUC score compared with AUPRC score.

Feature analysis We interpret the DMNN model via knowledge distillation as introduced in Section 3.3. To do so, the
interpretable gradient boosting machine for each patient subgroup is trained to learn the input-output relation captured
by DMNN. As GBM mimics the predictive behavior of DMNN, we can then identify risk factors and their dependence
relations to the onset of AHF. Figure 6 shows the top8 features that are important for predicting AHF. We see that both
DMNN and GBM share some features such as blood pressure (initial SBP, initial DBP, SBP and DBP), indicating
BP is a universal risk factor for AHF. As shown in Table 1, blood pressure level (initial SBP 153.27mm Hg, initial
DBP 91.23mm Hg, SBP 127.86mm Hg and DBP 75.87mm Hg) indicates that patients with elevated values are more
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Figure 5: 2D t-SNE plot. (a) Raw input features; (b) feature embedding from FNN; (c) feature embedding from
DMNN; DMNN feature embedding exhibits two patient subgroups; a local model is fitted for each subgroup.
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Figure 6: Top 8 important features.

likely to be diagnosed with AHF. Comparing DMNN with GBM, important risk factors for DMNN are rather different
from those of GBM. For example, natriuretic peptide (NP) identified in GBM is the single most important risk factor
for the diagnosis of AHF. However in DMNN, NP is only important in Subgroup 2 and not very important in terms
of predictive power in Subgroup 1. While NP level is informative in the diagnosis of heart failure, the difference
in NP importance in those models possibly implies large disparity in the development of AHF. Within DMNN, both
subgroups also share MAP as an important feature yet have subgroup specific features. In Subgroup 1, SV, dP/dt and
HR are important hemodynamic features whereas in Subgroup 2, SVR and RR are identified important.

Discussions To further understand the dependence relation between features and AHF in patient subgroups, the partial
dependence plots (PDP) for five important features (initial DBP, MAP, RR, SV, SVR) in either Subgroup 1 or 2 are
shown in Figure 7. Both subgroups follows a similar dependence relation for initial DBP and MAP: as their level
increases, the risk of AHF also increases. But for RR, SV and SVR, the dependence relation differs. In Subgroup 2,
RR and SVR have a positive dependence relation on AHF onset while no such relation in Subgroup 1. In Subgroup 1,
patients are at high risk of AHF if SV level is too low or too high; whereas in Subgroup 2, SV is not very predictive
for AHF. As DMNN performs well in AHF prediction as shown in Table 2, the difference between two subgroups
provides useful information for clinicians in disease diagnosis.

5 Conclusion

In this paper, we propose DMNN, a deep mixture model for predictive modeling as well as patient stratification.
DMNN identifies patient subgroup via gating mechanism that aims at capturing similar functional input-output re-
lations among patient population. With subgroup discovery, DMNN can identify subgroup-specific risk factors (in
terms of AHF prediction) and such granularity can potentially help clinicians understand subgroup differences, which
is an advantage of DMNN compared with traditional “one-size-fits-all” approaches. Experiments on an AHF predic-
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Figure 7: Partial dependence plot for important features for Subgroup 1 or 2.

tion task show that our proposed method can achieve state-of-art performance and discover risk factors that might be
missed by traditional methods. One limitation of this work is that DMNN is not able to characterize patient subgroup
(i.e. phenotyping). Hence, for future works, we will expand our work to incorporate information from multimodal
data such as medical images, clinical notes and time series data to further improve DMNN for better characterization
of patient subgroups.
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